
A Dynamic Approach for Automatic Error
Detection in Generation Grammars

Tim vor der Brück1 and Holger Stenzhorn2

1 Introduction

In any real–world application scenario, natural language gen-
eration (NLG) systems have to employ grammars consisting
of tremendous amounts of rules. Detecting and fixing errors
in such grammars is therefore a highly tedious task.

In this work we present a data mining algorithm which
deduces incorrect grammar rules by abductive reasoning out
of positive and negative training examples. More specifically,
the constituency trees belonging to successful generation pro-
cesses and the incomplete trees of failed ones are analyzed.
From this a quality score is derived for each grammar rule
by analyzing the occurrences of the rules in the trees and by
spotting the exact error locations in the incomplete trees.

In prior work on automatic error detection v.d.Brück et al.
[5] proposed a static error detection algorithm for generation
grammars. The approach of Cussens et al. creates missing
grammar rules for parsing using abduction [1]. Zeller intro-
duced a dynamic approach in the related area of detecting
errors in computer programs [6].

2 Error Detection

The basic purpose of NLG, as considered here, is to convert
an input structure, given as feature value pairs, by means of
grammar rules into a constituency tree where the surface text
can be read off as the terminal yield (we use the formalism of
Busemann [3]). Each non–leaf node in this tree is associated
to a particular input substructure, a category and the applied
grammar rule while the leaf nodes are associated to text seg-
ments. The final surface text is created by concatenating the
text segments of the leaf nodes.

In case of success, the generation system not only returns
the generated surface text (or texts if multiple possible solu-
tions have been found) but also the associated constituency
tree (or trees). However, in the case of failure, no surface text
is generated and no associated constituency tree exists. How-
ever, it is obvious that, in order to detect a specific spot where
the generation process fails, it is highly advantageous to have
partial constituency trees for the failed generation attempts
as well.

For this reason, the employed generation engine has been
extended to provide two types of partial trees in case of gen-

1 FernUniversität in Hagen, Hagen, Germany,
tim.vorderbrueck@fernuni-hagen.de

2 Institute for Medical Biometry and Medical Informat-
ics, University Medical Center Freiburg, Freiburg, Germany,
holger.stenzhorn@uniklinik-freiburg.de

eration failures: The tree of the first type is the largest tree
to result from the generation process – we call the maximum
tree.

The other alternative tree, representing a non–successful
generation, is the one having the smallest total difference to
a complete tree – we call the minimum tree. Usually both
types of trees are incomplete and hence can have non–terminal
categories at its leaf nodes.

In the following, a complete tree resulting from a successful
generation is called a positive tree while an incomplete tree
(either maximum or minimum) is called a negative tree.

The detection of incorrect rules is basically done in several
consecutive steps:
1. First, a global (i.e., independent of any specific input struc-

ture) rule quality score (gqs) is derived for each rule.
2. For each input structure leading to a generation failure, the

most probable error location in the associated constituency
tree is detected.

3. Both information are put together to derive a local rule
quality score (lqs) which is associated to a certain input
structure. The rules with the lowest lqs (and gqs below a
given threshold) are considered as potentially erroneous.

1. Deriving a Global Rule Quality Score
If a certain rule appears in a positive generation tree, this

generally indicates that the rule is correct. However, the fact
that a rule is appearing in a negative tree or in no constituency
tree at all, is an indicator for an incorrect rule. By using this
information, a gqs is defined for each rule.

The gqs of a rule reflects the probability that a genera-
tion fails if this rule appears in the associated constituency
tree. Thus, the gqs is defined as the negated probability
that a tree is negative if the rule r occurs in that tree:
gqs := −P (t ∈ T−|(lhs(r), r) ∈ t) where
• T− : the set of negative trees
• lhs(r): left-hand side (LHS) category of rule r (see [3])
As usual, the probability is estimated by the relative fre-
quency of a tree being negative if a certain rule appears in
it. If a rule never appears in either the positive or negative
trees then its gqs is set to −1 since this is a strong indication
of a potential error. A rule is assumed to be correct if its gqs
exceeds a given threshold h.

To account for the fact that the probabilities for rules
leading to negative trees (or that they appear in no tree
at all) are not independent from each other (i.e., a rule
might be assigned to a low score because of an error in
an ancestor rule), a small portion of the gqs is propagated
upwards and added to each rule’s gqs where that rule could,



according to its LHS, be possible applied at a superior node
in a constituency tree. Note that only scores are modified
or propagated which are assigned to rules which are not
assumed to be correct (gqs < h).

2. Spotting the Error in the Generation Tree: The gqs
already results in a good approximation for identifying an
incorrect rule. However this method also has a drawback
in that the identified rules are not related to any input
structure. This is obviously an important information for
the grammar developer if (s)he wants to know why no
output has been generated for a specific input structure.
Furthermore this information can potentially be necessary to
automatically correct the error (which is planned for future
work). Hence we additionally try to determine for each input
structure leading to a generation failure the most probable
location (node) in the constituency tree where the error
occurred and use this information to calculate a local rule
quality score (i.e., a score which relates to a certain input
structure). The identified node is supposed to be associated
to the LHS category of the erroneous rule 3.

Naturally, since positive trees do not lead to a generation
error, for spotting the erroneous nodes only the negative trees
have to be examined. An error is defined for each negative tree
separately which means that different errors can relate to dif-
ferent constituency trees. Like the determination of potential
erroneous rules there is again the possibility to employ either
the maximum or the minimum tree where both methods have
been evaluated. To spot the error location, each node in a
negative tree is assigned to its node quality score (nqs).

For the calculation of the nqs the following two aspects
relevant to many machine learning approaches are taken into
account:
1. How do the negative examples (i.e., negative trees) differ

from the positive ones?
2. What do all negative examples (i.e., negative trees) have

in common?
To account for the first aspect the probability of a node is
determined in that a tree is negative if it contains this node
(pair of category and rule): q1 = P (t ∈ T−|(r, c) ∈ t) where
the probability is estimated by the relative frequency. A node
is assigned the maximum value of 1 if it occurs only in the
negative and never in positive trees.

To account for the second aspect the probability is esti-
mated in that a negative tree contains a given pair of category
and rule: q2 = P ((r, c) ∈ t|t ∈ T−). A node is assigned the
highest possible value of 1 if it occurs in all negative trees.

The nqs for a tree node (r, c) is then given as
nqs(r, c) = −q1q2. A node is considered to appear in a
constituency tree if this tree contains a node associated to
identical category and rule. Note that a leaf node of the
incomplete constituency tree might not be associated with
any rule. Such a node matches all nodes with identical
category. The nodes associated with the lowest nqs are
assumed to be erroneous, i.e., one of them is assumed to
contain the LHS category of the erroneous rule.

3. Putting Both Types of Information Together : Finally,
the gqs and the expected error location are combined to

3 Note that this approach is not suitable for detecting rules with an
incorrect LHS. In this case, only the gqs should be used instead.

the lqs. Even if the error location in the constituency tree
is not correctly determined by this algorithm, the actual
error location (i.e., the node containing the LHS category of
the erroneous rule) is often a sibling/child or parent of the
indicated location. Thus, for determining the lqs of a rule, its
gqs is weighted depending of the minimum possible distance
in a constituency tree of that rule’s LHS category from
any node representing one of the indicated error locations
using an exponential decay. If this distance could not be
determined because the rule’s LHS category is not reachable
at all, the distance is set to the number of categories in the
grammar.

3 Evaluation and Conclusion

Table 1. Erroneous rule is among the top 5/3/2 suggestions; for
all examples/examples with both positive and negative trees, in

percent (%).

For the evaluation, we randomly changed the path expres-
sions [5] of a rule’s RHS (right hand side) in the evaluation
grammar and determined how often the erroneous rule ap-
peared under the top five/three/two rules with the lowest lqs.
The evaluation shows that the accuracy raises significantly if
at least one positive constituency tree exists (see Table 1).

The described algorithm has been implemented in a plug-
in for the grammar workbench eGram [3] which supports the
GUI-based development of grammar rules for the grammar
formalisms of the TG/2 [2] and XtraGen [4] NLG systems.

The automatic detection and correction of grammar errors
remains a very difficult task but it is an important and nec-
essary step towards creating NLG systems that are easy to
deploy in real-world application scenarios with large amounts
of rules.

ACKNOWLEDGEMENTS

We are especially obliged to Stephan Busemann for providing
one of the authors with a research license of eGram and Xtra-
Gen. Furthermore we thank all members of our departments
who contributed to this work.

REFERENCES

[1] J.Cussens and S.Pulman, ‘Incorporating linguistics constraints
into ILP’, in Proc. of CoNLL, Lisbon,Portugal, (2000).

[2] S.Busemann, ‘Best-first surface realization’, in Proc. of INLG,
Herstmonceux, UK, (1996).

[3] S.Busemann, ‘eGram — a grammar development environment
and its usage for language generation’, in Proc. of LREC, Lis-
bon, Portugal, (2004).

[4] H. Stenzhorn, ‘XtraGen. A NLG system using Java and XML
technologies’, in Proc. of NLPXML, Taipeh, Taiwan, (2002).

[5] T. v.d.Brück and S. Busemann, ‘Suggesting error corrections of
path expressions and categories for tree–mapping grammars’,
Zeitschrift für Sprachwissenschaft, 26(2), (2007).

[6] A. Zeller, ‘Locating causes of program failures’, in Proc. of
ICSE, Saint Louis, Missouri, USA, (2005).


