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A large knowledge base is a prerequisite for a lot of tasks in natural language
processing (NLP). To build a handcrafted knowledge base, which is applicable to
real world scenarios, a vast amount of effort is required. Furthermore, experts are
needed with a strong background in linguistics, artificial intelligence and knowledge
representation which may not be available to the extent necessary (knowledge acqui-
sition bottleneck). For these reasons, machine learning techniques are widely used
to construct a knowledge base automatically. Learning techniques are also relevant
to many other areas, e.g., for readability analysis. In the latter area, a lot of work is
needed to find the optimal settings for a readability formula and it usually involves
a large amount of trial and error iterations. Thus, it is preferable to learn the nec-
essary parameter settings automatically. This report investigates the application of
machine learning techniques in both areas. Finally, several freely available machine
learning tools, which can be employed to accomplish both tasks, are introduced and
compared with each other.
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1 Introduction

1 Introduction

Machine learning techniques are widely used in the area of NLP. This report concen-
trates on two application scenarios: knowledge acquisition and readability analysis.

Knowledge Acquisition: A large knowledge base is a prerequisite for the success-
ful application of NLP technology to a wide range of tasks. A knowledge base can
contain several types of knowledge:

e Lexical and morphological knowledge (e.g., part of speech information, named

entities),

e Syntactic knowledge (e.g., subcategorization frames), and

e Semantic knowledge (e.g., common sense knowledge including semantic rela-

tions and entailments between concepts, and valency frames, i.e., subcatego-
rization frames including semantic information).

The knowledge about commonly used named entities can support the parsing
process and the coreference resolution. Another application scenario where such
knowledge is useful is the automatic generation of hyperlinks for webpages. The
approach of Busemann et al. highlights all named entities of certain semantic types
occurring in a text [BDKT03]. If the user selects one of the highlighted named
entities, a database is queried for a relevant webpage. In case of success, this webpage
is displayed in an external browser window.

Valency frames specify the number and type of arguments for verbs, nouns, and
adjectives as well as their syntactic and semantic properties. Examples for syntac-
tic properties are the grammatical category or the case of noun phrase arguments.
Semantic properties are for instance semantic features or ontological sorts [Hel06].
The knowledge about a valency frame is important for linguistic parsers to resolve
ambiguities of syntactic structures of analyzed sentences and of word readings (Word
Sense Disambiguation) [Har03].

Important semantic relations are hypernymy /hyponymy (supertype and subtype),
synonymy, antonymy, and meronymy/holonymy (part-whole relations). Semantic re-
lations are vital for all NLP tasks which require inferences like question answering or
recognizing textual entailment [RDH'83, BM06]. Moreover, such relations can be
relevant in other areas of NLP as well. For example, a text generation component
might replace a concept by a synonym or a hypernym in order to avoid word rep-
etitions for a better writing style [KD96]. Semantic relations are further employed
for resolving bridging references which is required for the assimilation of semantic
networks [GHHO6].

An entailment is a logical relation between two formulas such that all models for
the first formula (A) are also models for the second (B): A = B. Entailments
can be used to represent inferences occurring in natural language. Both, semantic
relations between generic concepts and entailments belong to the so-called common
sense knowledge. Question answering systems require a vast amount of common
sense knowledge for a good performance.

The knowledge as mentioned above can either be stored directly in the knowledge
base or alternatively in a semantic lexicon depending on the design of the employed
NLP system. The manual construction of large knowledge bases or semantic lexicons
needs a vast amount of effort. Thus, a variety of methods are proposed to automati-
cally extract the above-mentioned knowledge via text mining over very large corpora.
This report investigates machine learning algorithms which are suitable and often
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used for this purpose.

Readability Analysis: To connect theoretical insights into learning techniques with
experiences of their applications in special fields, an overview is given of their usage
in the area of readability analysis. Such an analysis assigns a numerical readabil-
ity score to a given text. Normally, this score is determined by combining several
linguistic readability indicators by a weighted sum. Each indicator (e.g., sentence
length or word length) assesses a certain aspect of readability.

Structure of this paper: Before going into details, a short overview of the general
organization of this document is given. Section 2 introduces the most important
machine learning algorithms which are usually employed in the area of knowledge
acquisition and readability analysis. Section 3 describes several knowledge extrac-
tion methods. In Section 4, typical approaches for learning readability scores are
discussed. Freely available machine learning tools, suitable for the above mentioned
application scenarios, are presented in Section 5. Finally, a conclusion and outlook
are given in Section 6.

2 Machine Learning Algorithms Relevant to Knowledge
Acquisition or Readability Analysis

2.1 Naive Bayes Classifier

The nalve Bayes classifier is one of the simplest classifiers for supervised learning.
This classifier applies to learning tasks where each element of a class is described by
a conjunction of attribute values where the number of classes is finite [Mit97, p.177-
178]. Such a classifier is trained by presenting a set of typical examples; on this basis
it predicts the class for previously unseen instances. That class should be chosen for
such an instance which maximizes the posteriori probability given the attribute value

pairs (A; = ay,..., A, = a,) of the instance by following the maximum likelihood
principle:
Cmaz = argmax P(C' = c|Ay = ay,..., A, = ay) (1)
C
with:

e A;: attribute ¢

e a;: value of attribute ¢ for the given instance

e (" classification

c: classification value

where A; (i = 1,...,n) and C are random variables. A straightforward approach

could be to approximate the probabilities by means of a simple frequency analysis. A

problem normally connected to this procedure arises from potential data sparsity, i.e.,

if the number of attributes is large, there might be no single training example with the

given attribute values a1,. .. ,a,. Thus, a procedure, which makes special assumptions

about the nature of the given data, is proposed to overcome this difficulty.
Applying Bayes Theorem, Equation 1 can be rewritten as follows:

P(Ay=ay,..., A, =a,|C =c)P(C =c¢) )
P(Al :al,...,An :an)

Cmap 1= argMax

For solving this maximization problem, only the class c¢ is actually varied while the
attribute values a1, ...,a, remain unchanged. Thus, Equation 2 can be simplified
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to:
Cmaz = argmax P(A; = a1,..., Ay, = ap|C = ¢)P(C =¢) (3)

The naive Bayes classifier makes the (naive) assumption that the attributes 4,,..., 4,
are statistically independent of each other. In this case, P(A; = aq,..., 4, = a,|C = ¢)
is given as the product of P(A; = a;|C = ¢) for i =1,...,n. Thus:

Cmaz = argmax P(C = ¢) HP(AZ- = q;|C = ¢) (4)
i=1

Cmaz can be found by approximating the probabilities by relative frequencies. Data
sparsity is not critical anymore since the relative frequencies of single attribute values
(instead of a combination of several attribute values) are determined.

The naive Bayes classifier is used by Cimiano et al. to combine several methods
for learning hyponymy relations (see page 20). For that, the attributes represent
the outcomes of the different methods and the classes represent the fact whether a
hyponymy relation holds or not.

2.2 Artificial Neural Networks

Input function

Activation function

Figure 1: A single perceptron of an ANN.

Artificial neural networks (ANNs) provide a general practical method by learn-
ing real-valued, discrete-valued and vector-valued functions from examples and are
inspired by the neural networks of a human brain [Mit97]. In this report, we will
concentrate on perceptron-based ANNs only (a single perceptron is illustrated in
Figure 1). Such an ANN consists of several perceptrons which are connected by di-
rected edges. The edges describe the data flow in the network, i.e., if two perceptrons
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are connected, the output of the source perceptron is used as the input of the desti-
nation perceptron. Additionally, some of the input nodes of a perceptron can have
constant values. Furthermore, each edge in the ANN is associated to a real-valued
weight. The output of a single perceptron is determined by applying the composi-
tion of the activation function and the input function to the input values. The input
function is usually given as the weighted sum f(x) = > 7" | x;w; of all input values
r;. An activation function often used is the Fermi function: g, s(f(x)) = 1

_ f(zg*u
[Mac05].

1+e
A single perceptron is frequently employed for data fusion of several models. This
approach is followed by Cimiano et al. [CPSTS05] to combine several methods for
hyponymy relation detection (see page 20).

2.3 Decision Tree Algorithm

Decision tree algorithms are supervised machine learning techniques which construct
a tree for classifying given data [Mit97] where the data has to be discrete-valued.
However, there exist several approaches to automatically derive (discrete) intervals
from continuous data which makes it possible to apply this algorithm to continuous
data as well. The inner nodes of the tree are associated to attributes, the edges are
associated to the values of these attributes and the leaf nodes are labeled with the
classes to which the data is assigned to. In order to classify a single data instance the
tree is traversed top-down and at each step, the attribute associated to a tree node
is compared with the same attribute of the given instance. The edge that matches
the attribute value of the given instance is traversed. If a leaf node is reached, the
data instance is assigned to the class denoted by the leaf node’s label.

In the following, a typical algorithm to learn such a decision tree is described.
Note that actually a vast amount of different approaches to accomplish this task
exist in practice. A decision tree is usually constructed top-down. At each node it is
first checked if all training examples which reach this node in a classification process
are classified identically. In this case, the node is marked as a leaf node and labeled
with the class of these examples. Otherwise, the attribute most useful for classifying
the examples has to be determined. Commonly used scores for determining the
best attribute are the information gain and the gain ratio [Mit97]. Child nodes are
created for each value of the chosen attribute. In the best case, examples assigned
to different classes are also associated to different values of this attribute. In this
case, no further expansion of the child nodes is necessary and all examples will be
classified correctly. Otherwise, the expansion of the tree has to be continued, i.e.,
the process is repeated for all child nodes.

In case no further attribute is left, i.e., all attributes were already consumed by
some ancestor node, the current node is also labeled as a leaf node and its class label
is determined by a majority vote among the classes of the associated examples.

A decision tree is often used to combine several models with each other (in a quite
similar way as Naive Bayes and ANN, see Sections 2.1 and 2.2). This approach
is followed by Cimiano et al. [CPSTS05] for detecting hyponyms (see page 20).
Furthermore, the approach of Girju et al. [Fel98] for meronymy extraction is also
based on a decision tree classifier (see page 25).
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Ay
ail ai2
Yes As
a1 a2
As A3
a3l as a3l as2
Yes No No Yes

Figure 2: Example of a decision tree with attributes Ay, Ao, As. All instances are classified to
either Yes or No.

2.4 Clustering

Clustering is an unsupervised machine learning algorithm. It divides a set of vec-
tors into several (usually disjoint) subsets (called clusters) [MS99, p.495-528]. The
elements of the same cluster should be located close to each other in a vector space
according to a certain similarity measure (which can be given, for instance, by the
Euclidean distance).

Clustering can be divided into hard and soft clustering where for hard clustering a
vector always completely belongs to a single cluster. For soft clustering in contrast,
the vectors are often assigned a degree of membership to a cluster, i.e., a vector
belongs to a cluster with a certain probability.

The clusters can be organized in a flat or hierarchical way where in the latter case,
the elements of each cluster are also members of the superior clusters. Hierarchical
clusters can be constructed either bottom-up or top-down where the first approach
is more widely used. In the area of knowledge acquisition, clustering algorithms
are used for extracting hyponymy relations (see Section 3.4) and paraphrases (see
Section 3.1).

2.5 Support Vector Machines

A support vector machine (SVM) [Vap79] is an algorithm to divide a set of vectors
belonging to two classes by a hyperplane A in such a way that the vectors on the same
side of the hyperplane are ideally classified identically (see Figure 3) and the margin
of this hyperplane is maximized. The margin is defined as the parallel hyperplanes on
either side of h which still separate the data and which have maximum and identical
distance to h. The vectors which are located on the margin are called the support
vectors. A support vector machine is also able to separate vectors which are not
linearly separable by transferring them into a higher dimensional space.

Previously unseen data are distributed into the two classes depending on which
side of the hyperplane the corresponding data vector is located. By combining several
hyperplanes, a classification into more than two classes is also possible. In the area
of knowledge acquisition, a support vector machine is employed for instance for
meronymy detection by Aramaki et al [AIMOO07] (an description of this approach is
given at page 25). For readability analysis, Larsson [Lar06] proposes an approach to
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Figure 3: Example for a classification using a support vector machine. A hyperplane divides the
set of black points from the set of white points. The support vectors are marked by
surrounding circles.

classify texts of a given corpus into several readability levels using SVM technology
(see page 31 of this report).

2.6 Genetic Algorithms

Genetic algorithms are a special kind of optimization algorithms which are inspired
by biology and are a subclass of evolutionary algorithms [Gol89]. Genetic algorithms
are capable of finding a solution for problems which cannot be solved analytically.
They start with an initial set of first guesses (suggestions) which are often created
by random. The suggestions (also called the population) are continually improved
by applying the following operations:

e Selection: successful suggestions (according to a fitness function) are kept, while
non-successful suggestions are removed.

e Mutation: create additional suggestions by modifying existing ones.
e Crossover: create additional suggestions by combining existing ones.

An approach of learning graph structures using genetic algorithms is proposed by
[Mas94]. The crossover operations employed by this algorithm is illustrated in Fig-
ure 4, the mutation operation in Figure 5. A genetic graph learning algorithm could
be employed to determine typical MultiNet substructures of sentences containing
hypernymy or meronymy relations.

2.7 Linear Regression

Many types of models describe a certain variable (the explained variable) by a linear
combination of other variables (the explanatory variables). In the area of readability
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Figure 4: Crossover operations for two graph structures. The resulting graph structures are dis-
played on the right side.

i

Figure 5: A graph structure is mutated by changing one node symbol.
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formulas for instance, a numerical representation of the readability of a text is often
calculated by a linear combination of readability indicators like sentence length or
word length. Linear regression [Gre93| can be used to determine the parameter
vector w of such a linear combination § = a + wX by minimizing the square error
between y and y, where:

e y: vector of the explained variables (desired outcome).

e X: matrix of the explanatory variables. One row of X contains all values

belonging to a certain explained variable y;.

e w: vector of parameters to estimate.

e a: vector of constants.
Additionally, several equality constraints can be defined. In matrix notation they
are given as:

Lw=q (5)

where
o L: L;; is the ith coefficient of w;
e (: result vector
The whole optimization problem can be rewritten as:

XTxX LT XTy
welg o e ]

HEE

where A is the Lagrange Multiplier (it can normally be ignored). Equation 7 can
be solved for w:

[ ;V } =W lu (8)

If no value restrictions are used, Equation 8 simplifies to:
w = (XTX)'xTy (9)

Linear regression is widely used to determine parameters of readability formulas (see
Section 4.1).

2.8 Robust Regression

One disadvantage of linear regression is that due to minimizing the square error this
method is quite sensitive to outliers [Rya97]. Frequently, an outlier cannot be filtered
out by normal outlier detection algorithms since the associated coordinates of this
outlier might not differ strongly from the other data points in absolute terms but
only regarding to its fit to the target function. Thus, several variants were developed
which are more robust to outliers than linear regression and which are therefore
named robust regression. Robust regression is used to determine the parameters of
the DeLite readability formula (see Section 4.1).

10
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2.9 Relational Learning

Relational learning methods are able to learn formulas in propositional logic which
contain n-ary relations (called predicates). These methods are an extension of purely
propositional learning approaches which are based on atomic formulas. Thus, an
introduction to the sequential covering algorithm for formulas of the latter type
[Mit97] is given first.

The aim of the sequential covering algorithm is to learn a set of if-then rules given a
set of positive training examples (examples which are classified as true) and negative
training examples (examples which are classified as false), where the conditions are
represented as a conjunction of literals.

SEQUENTIAL-COVERING(T arget_attribute, Attributes, Examples, T hreshold)
e Learned_rules « {}
e Rule + LEARN-ONE-RULE(T arget_attribute, Attributes, Examples)
e while PERFORMANCE(Rule, Examples)> Thresholds, do
e Learned_rules < Learned_rules U {Rule}
o Examples < Examples— {examples correctly classified by Rule}
e Rule «+— LEARN-ONE-RULE(T arget_attribute, Attributes, Examples)
e Learned_rules < sort Learned-rules according to PERFORMANCE over Examples

e return Learned_rules

Figure 6: Pseudocode for the sequential covering algorithm from [Mit97, p. 276].

The pseudocode for this algorithm is given in Figure 6. This algorithm sequentially
learns one rule after another. In each iteration, it determines the best rule according
to a given PERFORMANCE function. A high score is obtained for rules which cover
as much as possible positive and preferably no negative examples.

The determination of a single rule is described in pseudocode in Figure 7. The
conjunction, representing the conditions under which the rule is applicable, is ex-
tended iteratively by adding additional attribute value restrictions (A; = a;;) which
causes the conjunction to cover less positive and less negative examples. Note that
for performance issues only the k best alternatives for such a restriction are selected
for further extension. If there are no more attributes left, the rule with the best
score is returned. In addition, all positive examples are removed which are covered
by this rule. As a result, only the remaining positive examples have to be regarded
in the next iterations. If no more positive training examples are left, the algorithm
terminates.

One drawback of this method is that only propositional formulas can be learned
but not formulas involving n-nary predicates which means that it is not possible for
instance to learn the following formula:

parent(x,y) A parent(x,z) Ny # z A male(y) — brother(y, z) (10)

Two possible approaches exist to extend the algorithm to formulas involving pred-
icates [Dze07] where the second approach is preferable due to its higher efficiency.

The first approach creates propositional atoms for every possible variable assign-
ment for the predicate arguments using all constants appearing in the training data,
e.g., for 5 constants and one two-place predicate, 5 x 2 = 10 atomic propositions
have to be introduced.

11
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LEARN-ONE-RULE( Target _attribute, Attributes, Examples, k) Returns a single rule that covers some
of the Fxamples. Conducts a general to specific greedy beam search for the best rule, guided by the
PERFORMANCE measure.
e Initialize Best_hypothesis to the most general hypothesis ()
e Initialize Candidate_hypothesis to the set { Best_hypothesis}
e while Candidate_hypothesis is not empty, do
1. Generate the next more specific Candidate_hypotheses
o All_constraints <— the set of all constraints of the form (A;=a;;), where
a is a member of Attributes, and v is a value of a that
occurs in the current set of Fxamples
o New_candidate_hypotheses <
for each h in Candidate_hypotheses,
for each ¢ in All_constraints,
e Create a specialization of h by adding the constraint ¢
e Remove from New_candidate_hypotheses any hypotheses that
are duplicates, inconsistent, or not maximally specific.
2. Update Best_hypothesis
e For all h in New_candidate_hypothesis do
o If (PERFORMANCE(h, Examples, Target _attribute) >
PERFORMANCE( Best_hypothesis, Examples, Target _attribute))
then Best_hypothesis < h
3. Update Candidate_hypotheses
e Candidate_hypotheses <— the k best members of
New_candidate_hypotheses, according to the PERFORMANCE measure
e Return a rule of the form
“IF Best_hypothesis THEN prediction” where
prediction is the most frequent value of Target_attribute

among those Frxamples that match Best_hypothesis.

Figure 7: Pseudocode for the function LEARN-ONE-RULE from [Mit97, p. 278].

The second approach extends the sequential covering algorithm in such a way that
in addition to adding a predicate to a conjunction, an equality constraint for two
variables appearing in any predicate of the regarded conjunction can be added as
well. In the example rule above, equality constraints have to be inserted to identify
the sole argument (i.e., y) of the predicate male with the second argument of the
first occurrence of the predicate parent. Analogously, the first argument (i.e., x) of
the first occurrence of the predicate parent is identified with the first argument of the
second occurrence of the same predicate. Furthermore, several aspects concerning
the bindings of the variables of the conjunction to the constants of the examples have
to be dealt with.

The relational version of the sequential covering algorithm is capable of learning
graph substructures. Thus, it can be employed to learn graph patterns for detecting
semantic relations (e.g., hyponymy or meronymy) in a semantic network.

12
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3 Knowledge Acquisition

3.1 Learning Textual Entailments

An entailment is a logical relation between two formulas such that all models for the
first formula (A) are also models for the second (B): A |= B. Entailments can be used
to represent inferences occurring in natural language. For this application scenario,
the term textual entailment is commonly used. According to the definition of the
Pascal Textual Entailment Workshop Challenge [GMDDOT7], a textual entailment
relation holds between a base text and a hypothesis if the validity of the hypotheses
can almost certainly be deduced from the validity of the base text. A special case
of a textual entailment is a paraphrase, i.e., a restatement which is semantically
equivalent to the original phrase.

Example:

1. Max Frisch is the author of the novel “Stiller”.

2. Max Frisch wrote the novel “Stiller”.

There are several algorithms to extract paraphrases automatically from texts. At
first these methods usually extract so-called templates. Such a template contains
several slots which can be filled by certain expressions.

Example: X is author of Y <> X has written Y.

A template is usually based on surface representations [RH02, BLO03], predicate-
argument structures [LPO01] or subtrees [SSGO03].

In the approach of Ravichandran and Hovy, a list of surface-oriented pairs of ex-
pressions (called anchors) is given [RH02]. The expressions of each pair are related
in a certain way to each other.

Example: The relation born in holds between Mozart and 1756 since Mozart was
born in 1756.

Sentences which contain both related expressions are then extracted by employing
a search engine. Afterwards, frequently occurring character strings in these sen-
tences are identified. Templates are then created by replacing the anchors in these
character strings (in the example Mozart and 1756) by slot variables. Employing a
bootstrapping approach, the list of expression pairs can be extended automatically.
This is done in such a way that the identified templates are tried to be applied on
all sentences of the text corpus. In case of success, the associated expression pairs
are used as anchors for further template extracting.

A disadvantage of this bootstrapping method is that only templates of the same
type (e.g., templates for birthdays) can be learned. Hence, to reach a good coverage,
anchor pairs of many different types have to be provided. For this reason, this
method was extended by the TE/ASE system in such a way that also the anchors
can be determined automatically[SDC04|. This approach uses as input only a word
list which can be easily extracted from a monolingual dictionary. The words from
this list, so-called pivot elements, serve the purpose of extracting anchor pairs from
a given text corpus. The pivot elements are characterized by the fact that they
are assigned special valency information (i.e., for verbs the information that they
require a subject and possibly one or several objects). If the pivot element and its
arguments build a collocation, i.e., they occur together in a lot of sentences, these
arguments will be used as anchors for determining paraphrases basically analogous
to the approach of Ravichandran and Hovy as explained above.

Szepktor et al. raised the recall of the TE/ASE system by 6% (relatively ca.
10 %) through preprocessing the sentences. The preprocessing consists in changing

13
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passive in active voice, in replacing abbreviations by their full written form, and in
simplifying appositions and conjunctions [SD07].

The methods described above determine a paraphrase equivalence class by keeping
a certain expression pair fixed and letting the substrings between them vary. In
contrast, Sekine recognize paraphrases by identifying keywords occurring in character
[Sek05] strings between two named entities (e.g., the word wunit for the phrase the
unit of ). These keywords identify the most important, i.e., semantically relevant
part of these expressions. The sentences of the investigated text corpus are clustered
according to these keywords. Inside of a cluster are mostly text passages which are
paraphrases of each other. This method is additionally combined with a variant of
the approach of Ravichandran and Hovy as described above.

Lin and Pantel describe an approach to determine an equivalence class where the
expression pair is varied too. The approach of Lin and Pantel extracts all paths
from a dependency tree which connect two nouns with each other [LPO1]. These
nouns are referred to as slot fillers. Two text passages are considered as similar (and
therefore as paraphrases) if the associated paths connect essentially the same nouns
with the same frequency with each other. For this purpose, every path is assigned
two vectors which specify the number of occurrences of the slot filler expressions in
the text corpus. For the determination of the similarity of the vector pairs a distance
function is defined, where the occurrence of usually rare nouns has more influence
for the similarity calculation than of more frequent ones. Note that this algorithm
is quite similar to the synonymy/hyponymy recognition by textual context analysis
[CPSTS05].

The methods described so far determine paraphrases typically on the non-sentence
phrase level. In contrast, the approach of Barzilay et al. determines paraphrases on
the sentence level [BLO03]. For that, the sentences of two different text corpora (for
instance Barzilay et al. used different newspaper corpora) are compared with each
other. A sentence pair is considered to contain paraphrase if the sentences have
a similar syntactic structure and contain words with identical meaning (n-gram-
Overlap). In principle, this approach is similar to a lot of shallow methods for the
determination of textual entailment [KMO06, IKN06, Ada06]. An advantage of this
approach is that very complex patterns can be recognized, but it should be kept in
mind that the learned paraphrases might be very specific nevertheless.

Bilingual corpora are also employed for paraphrase recognition [BMO01]. The ap-
proach of Barzilay et al. is based on the assumption that two independent translators
create translations with identical contents but different words, i.e., the two transla-
tions should contain many paraphrases. Barzilay et al. first align the sentences from
both corpora by identifying sentence pairs containing a lot of identical words. After-
wards, text fragments with identical words are determined for each aligned sentence
pair. Paraphrases are then expected to appear between these text fragments.

Zhao et al. focus on a special kind of paraphrases, i.e., paraphrases of questions
[ZZ1.07]. For this purpose, they analyze the logs for the online encyclopedia Encarta'
which allows the formulation of questions in natural language. In the first step,
questions are clustered according to their type, e.g., abbreviation, animal, body, color,
creative, explanation, definition, etc. Afterwards, the questions inside such a cluster
are further subdivided into other clusters according to the content words. A question
is usually part of several of those subclusters. Each question is compared to every
other question of the same subcluster. Whether the elements of a question pair are

'"URL: http://de.encarta.msn.com/

14



3 Knowledge Acquisition

paraphrases of each other was learned by means of PAUM (perceptron algorithm
with uneven margins) [LZHST02]. The features exploited for learning included the
following:

e cosine similarity feature between content words.

e named entity overlapping feature (NEF): Overlapping rate of named entities,

computed by a variant of the overlap index (see Section 3.3).

e user click preference: Comparison of mouse clicks which assumes that questions

leading to similar clicks are similar.

e WordNet synonym feature: Overlapping rate between synonyms.

All of the methods for extracting textual entailments described so far are limited
to paraphrases. However, not all kinds of textual entailment text pairs are actually
considered as paraphrases. For instance the action of bestowing implies the action
of giving but not the other way around. A method capable of learning textual
entailments which are not paraphrases was developed by Zanzotto and Moschitti
[ZMO06]. As training data they use text pairs from the Pascal Textual Entailment
Challenge|GMDDOT7] for which a textual entailment relation is known to hold. They
investigate in what way the syntactic structure of the base text can be transformed
into the syntactic structure of the hypothesis. Textual entailment rules are then
extracted which describe these transformations.

Moreover, special textual entailments can be learned by using the algorithm de-
scribed in Section 3.7 which extracts useful knowledge from generic sentences.

Except from texts, entailments are also often learned from lexicon glosses which
contain verbal explanations for lexical entries.

Example: boxing: to hit someone with the fist.

The approach of Glockner et al. [GHOO05] parses the explanation of a word in Ger-
maNet with a deep analyzer and stores the resulting semantic representation in the
knowledge base. The main problem Glockner et al. were confronted with is to dis-
ambiguate the words occurring in such an explanation since the available textual
context is usually quite small.

Putting things together, the most existing approaches are based on a surface rep-
resentation or on a syntactic structure, which leads to several shortcomings in com-
parison with a deep semantic representation. There exist many ways to express
semantically identical facts using syntactic or surface representations, which leads
to a high number of templates learned. Thus, by using a semantic representation,
the amount of learned entailment templates can be reduced considerably. Moreover,
the learned entailments are also more generally usable. Therefore, the usage of a
semantic representation can diminish the resource consumption by additionally im-
proving the coverage. A normalization or preprocessing step is superfluous or can at
least be considerably diminished. Furthermore, semantic representations are always
based on concepts instead of word forms, which can also reduce problems connected
with ambiguous words, which of course depends on the quality of the applied Word
Sense Disambiguation. Finally, the type of entailments which can automatically be
learned by the approaches described above is quite limited. The methods usually
concentrate on certain types of textual entailments (e.g., paraphrases).

3.2 Learning Ontological Sorts and Semantic Features

Ontological sorts are an important part of the multi layered extended semantic net-
work (MultiNet) formalism [Hel06]. MultiNet is a knowledge representation formal-
ism for the semantics of natural language. Ontological sorts build a basic ontology of
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concepts. Each concept in a semantic lexicon is assigned to one ontological sort. in
a given sortal hierarchy. The top level sort is named Entity and subsumes all other
sorts. On the next level, the following sorts are defined:

1. Objects; associated grammatical category: noun phrase
e Concrete objects: e.g., milk, honey
e Abstract objects: e.g., race, robbery
2. Situations; associated grammatical category: verb phrase
e Static situations, e.g., being pale with hunger, having a temperature of. ..
e Dynamic situations, e.g., work, rain
3. Situational Descriptors; associated grammatical category: prepositional phrase
e Temporal situational descriptors, e.g., yesterday, on Mondays
e Local situational descriptors, e.g., on the roof, under the table
e Modalities, e.g., probably, necessary
4. Qualities; associated grammatical category: adjectival phrase
e Properties in the narrower sense, e.g., tall, heavy
e Relational qualities, e.g., equivalent, inverse
e Functional qualities, e.g., philosophical, chemical
5. Quantities; associated grammatical categories: noun phrase, adjectival phrase
e Quantificators, e.g., all, more than the half
e Unit of measurement and measurements, e.g., 8 kg, a few meters
6. Graduators; associated grammatical category: adverbial phrase
e Qualitative graduators, e.g., especially, rather
e Quantitative graduators, e.g., almost, nearly
7. Formal entities: objects which do not have a direct linguistic representation,
e.g., in the upper half of the figure, the components in the left corner

Currently, more than 40 different ontological sorts are defined in MultiNet. Ad-
ditionally, the MultiNet formalism defines several semantic features, i.e., semantic
properties of objects which are either be present or not present. Note that the value
of a semantic feature can also be undefined.

Examples of semantic features are animate (living being) and human (human being).
Ontological sorts and features can be employed for ontology building and hyponymy
detection. A hyponymy relation between two entities normally requires the sorts of
the hypernym and of the hyponym to be identical. Furthermore, the hyponym has
to contain all semantic features of the hypernym.

Socher et al. describe a method to derive ontological sorts and semantic features
for nouns by text mining [SBOO07]. In the first step they build complex semantic sorts
consisting of an ontological sort and a list of semantic features where the latter are
set appropriately corresponding to the associated ontological sort. The hierarchy of
the complex semantic sorts is defined by the hierarchy of the associated ontological
sorts.

The aim of this algorithm is to derive a complex semantic sort for a noun by
examining the associated verb with that noun in a deep subject/object position or
the modifying adjective in case such a verb or adjective exists. This procedure is
based on the fact that an adjective or verb usually occurs in texts together with
nouns having similar ontological sorts or semantic features. Consider for instance
the adjective charming. The modified noun should usually be assigned the semantic
feature human.

This approach determines for every noun the ontological sort and semantic fea-
tures with the highest probability by investigating the associated verb or modifying
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adjectives by means of a frequency analysis. Using this information, this approach
looks for the most specific complex semantic sort in the sort hierarchy which is com-
patible with the extracted sort and features. The ontological sorts and semantic
features are then directly obtained by the definition of that complex semantic sort.
By learning complex semantic sorts instead of simple ontological sorts and semantic
features directly, inconsistencies between sorts and features can be avoided. In the
evaluation this approach showed a high precision but a rather low recall.

3.3 Learning Synonyms and Near-Synonyms

In wide areas of NLP, e.g., for question answering systems, information retrieval,
and recognizing textual entailment it is important to decide whether concepts are
semantically similar or not. Note that almost all approaches for detecting semantic
similarity are shallow and deal with words instead with semantic concepts. Thus,
in the following, only the determination of the semantic similarity between words is
described. Analogously, this basically holds for learning the other semantic relations
described in this work as well, i.e., hyponymy, meronymy and antonymy.

The similarity is usually given by a numerical similarity measure. One way to
define such a measure is to derive for both words a vector representation from their
textual contexts and compare both vectors with each other. Such approaches are
based on the assumption that words are semantically similar if they appear in equiv-
alent (or very similar) textual contexts [MS99, Har68|. The textual context of a word
is given by neighboring words, or words which are related by a certain grammatical
relation to the investigated word (head modifier in [Rug97| or predicate argument
structures in [Hin90]).

The word context can be represented by vectors. The element v; of the vector
for a word w determines the frequency of another word u; appearing in the textual
context of w. Some approaches determine only binary values, i.e., v; = 1 if the
number of common occurrences is above a given threshold. By using binary values
a set representation can easily be derived. A word u; belongs to the set X of the
words occurring with w if and only if v; = 1.

The semantic similarity between two words w and w can then be approximated
by the comparison of the associated sets X and Y. Common similarity measures
are given in Table 1. Most of these formulas reach the maximum value of 1 only if
both sets are identically. One exception to this rule is the overlap index, where the
maximum value is reached if one of the sets is a subset of the other.

Table 1: Similarity measures for binary vectors from Manning/Schiitze.

Similarity measure Definition
Matching coefficient IX NY]|
Dice coefficient %
Jaccard /Tanimoto coefficient %
Overlap coefficient %
IxXAy|’

Cosine

VIX[Y]

Table 2: Similarity measures for continuous values, x = P(clw;), y = P(c|lwz),
F(w) = {c|I(c,w) > h},where h is some given positive threshold.
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Similarity measure Definition

Cosine cos(x,y) = %

p-norm llallp = (la1lP + ... + |an[P)"/P
KL divergence D(x|ly) = >_iL; zilogy %
a-skew D(x|[(ay + (1 — a)x))

Information radius D(x||%) + D(y||%)

c€ F(w))NF (wy) 1 (6:w2)

Precision stmp(we, wy) =
p( 25 1) ZceF(uzg)I(c’wQ)
Recall Sy (Wo, wy ) = ZEGEWDOF(w) I(c,w1)
r 2, W1 ZceF(wl)I(c’wl)
i ) _ 2stmp(we,wi)simy (w2,w1)
Harmonic Mean $iM (W2, W1) = simp (wz,w1)+ simy (wg,wy)

One drawback of the approaches with binary values is that the similarity mea-
sures might represent the actual semantic similarity only very roughly. This can
be improved by using measures based on continuous (i.e., non-binary) values. Such
measures often require the compared vectors to be normalized. In this case, the vec-
tor components can also be interpreted as the probability x := p(c|w) that a word w
has the textual context c.

In the following several continuous similarity measures are introduced which are
all formally specified in Table 2. The cosine method for binary vector components
can be generalized to the continuous case as well. Another frequently used measure
is the so-called p-norm where the p-norm is applied on the vector difference of both
vectors. In practice, the 1- and 2-norm are most often used [DLP97, GM98]. In
case of normalized vectors, ranking word pairs according to the 2-norm or the cosine
norm leads to identical results.

A more probability-oriented approach is the Kullback-Leibler(KL) divergence
D(x||ly) [KL51]. A drawback of this approach is that a summand is not defined (or
infinite if a limit approach is used) in the case that one component of y is zero. This
problem can be overcome by employing the a-skewed variant [Lee99] and setting «
to a high value near one like 0.99. A further drawback of the KL divergence is that
it is not symmetric, i.e., D(x||ly) # D(y||x). Therefore, this measure was modified
by Dagan et al. to the so-called information radius [DLP97]. Dagan et al. compared
information radius, 1-Norm and KL divergence with each other for estimating the
probability for the occurrence of word pairs (wy,ws) which do not show up in the
training set. It was investigated how often words which are semantically similar to
wy appear together with we in a given text corpus. The semantic similarity was
calculated with all three approaches alternatively. The evaluation showed that the
information radius approach led to significantly lower errors than the other methods.

The similarity measures precision, recall, and harmonic mean as described in Ta-
ble 2 [WWMO04] are based on the pointwise mutual information, which is a measure
of the association between a word and a given context (e.g., neighboring word) which
is defined as:
p(cw)

p(c)

Semantic similarity can be employed to determine synonymy relations between
word pairs. Note, however, that usually a high similarity is also obtained if a hy-
ponymy or an antonymy relationship holds. Hence, a combination with other meth-
ods is necessary for getting an acceptable precision.

An alternative approach for synonymy extraction by context analysis was proposed
by Biemann et al. [BBQ03, BBQO04]. This approach takes the possibility into account

I(c,w) = logy (11)
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that the knowledge base already contains synonyms and also handles the merging
of already existing with newly derived synsets (synset: synonymy equivalence class).
The key feature of this approach consists in the fact that iterated co-occurrences
are used. The first order co-occurrence set of a word is defined as the set of all
words which appear in its textual context. A second order co-occurrence set of a
word is then the set of all words which appear together with this word in a first
order co-occurrence set. In principle, this process can be repeated infinitely to build
co-occurrence sets of third, fourth, etc. order.

After the co-occurrence sets are determined, they have to be merged with the
existing synsets. This is done by determining for each existing synset the most
similar co-occurrence sets, i.e., the sets having the largest intersection with that
synset. Elements occurring in all of these co-occurrence sets are then added to the
synset. How many co-occurrence sets are used depends on the so-called semantic
homogeneity of the sets which is measured by certain semantic properties.

Another approach exploiting co-occurrences was introduced by Edmonds [Edm97].
This approach creates a lexical co-occurrence network, where an arc exists between
two words if both words co-occur in a given text corpus. The significance score of
two words wy and w1y for being synonymous is then defined as:

. 1 t qdi—1,4i
siglwn,wn) = = 3 Q (12)
¢ €Q(w1,w2)
where:
e Q(wy,wy) : the shortest path ¢ = (q1,. .., ¢qq) in the co-occurrence network from
w1 to wo

e d: the length of the shortest path
e t(gi—1,q;): value for the statistical t-test that the occurrences of ¢;—1 and ¢; are
independent (see [CGHT94])
The significance score reaches high values if the path between both words is rather
short and the t-value of the path components (which measures co-occurrence) is quite
large. Edmonds describes an application scenario of this method in the area of text
generation. Let us assume, there exist several synonymous words to fill in a gap in a
sentence. That word should then be chosen which fits best into the textual context,
i.e., to the other words of the sentence. The best fitting word w, for a sentence S is
then given as:
wy, = argmax Z sig(w’, w) (13)
v weSs

3.4 Learning Hypernyms and Hyponyms

According to Fromkin et al., hyponyms are a set of related words whose meanings
are specific instances of a more general word [FRH02].

Example: A hammer is a tool.

In this example, hammer is called a hyponym of tool and tool is a hypernym of
hammer. The knowledge about hyponymy relationships is important in many areas
of NLP. Consider for example the following Textual Entailment problem:

Base text: Mr. Peters bought a Mercedes.

Hypothesis: Mr. Peters bought a car.

If it is known that Mercedes is a hyponym of car, the hypothesis can be deduced
from the base text.
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Automatic hypernym extraction is usually based on text mining in large corpora,
text mining in dictionaries (mono and bilingual), or document clustering.

Let us first take a closer look of extracting hyponyms via text mining in large
corpora. Basically, there are two methods to do this:

1. Analyzing the syntagmatic relations of sentences. Approaches following this

principle often use text patterns for hyponymy detection.

2. Analyzing the paradigmatic relations of sentences. This method is based on the

fact that a hypernym often occurs in the same textual contexts as its hyponyms.
The approach of Hearst belongs to the first kind of algorithms. It employs the fol-
lowing patterns for the recognition of hyponymy relations between nouns in English
texts [Hea92| (hyponym(ai,as) means: ap is hyponym of as):

e such NPy as {NP3y  ,}* (or|land) NP

= hyponym(NP;, NPg) i € {1,...,n}

Example: works by such authors as Herrick, Goldsmith and Shakespeare.

e NP{,NP3__,}* or other NP

= hyponym(NP;, NPgy) i € {1,...,n}

Example: Bruises, wounds, broken bones or other injuries

o NP{,NPy _,}* and other NP

= hyponym(NP;, NP,) i € {1,...,n}

Example: ...temples, treasuries, and other important civic buildings.

e NPy, including{ NPy . ,}* and/or NP,

= hyponym(NP;, NPgy) i € {1,...,n}

Example: All common-law countries, including Canada and England . ..

e NPy, especially{ NP . ,}*and/or NP,

= hyponym(NP;, NPgy) i € {1,...,n}

Example: most Furopean countries, especially France, England and Spain . . .
These patterns are applied to a large text corpus and hyponyms/hypernyms are
extracted according to the associated rules. One critical point of this algorithm is
the size of the text corpus. If it is quite small, the patterns will possibly be matched
too rarely. In this case, the number of extracted hyponymy relations can be rather
small too.

Therefore, Cimiano et al. extended this approach in such a way that they use
the entire Web as corpus and generate search engine queries by inserting a pair of
arbitrary terms ¢; and ¢2 (a term is considered to be some arbitrary noun phrase) in
the hypernym and hyponym position position of the pattern [CPSTS05]. The prob-
ability that a hyponym relation holds between two terms tq,to is then approximated
by the relative frequency of search results found divided by the number of patterns
found for ¢;.

Apart from the usage of handcrafted patterns there was also some work to deter-
mine text patterns automatically [SJNO5]. For that, Snow et al. collected sentences
in a text corpus with known noun pairs of hyponyms and hypernyms. These sentences
are then parsed by a dependency parser. Afterwards, the path in the dependency
tree is extracted which connects the corresponding nouns with each other. To ac-
count for certain key words indicating a hypernym relation like such (see first Hearst
pattern) they added the links to the word on either side of the two nouns (if not yet
contained) to the path too. Frequently occurring paths are then learned as patterns
for indicating a hypernymy relation.

An alternative approach for learning patterns which is based on a surface instead
of a syntactic representation was proposed by Morin et al. [MJ04]. They investigate



3 Knowledge Acquisition

sentences containing pairs of known hypernyms and hyponyms as well. All these
sentences are converted into so-called “lexico-syntactic expressions” where all NPs
and lists of NPs are replaced by special symbols, e.g.: NP find in NP such as LIST. A
similarity measure between two such expressions is defined as the sum of the maximal
length of common substrings for the maximum text windows before, between and
after the hyponym /hypernym pair. All sentences are then clustered according to this
similarity measure. The representative pattern (called candidate pattern) of each
cluster is defined to be the expression with the lowest mean square error (deviation)
to all other expressions in the same similaraty cluster. The patterns to be used for
hyponymy detection are the candidate patterns of all clusters found.

One problem that arises by the usage of patterns is that the patterns often have
either a high precision or a high recall for detecting hyponyms but not both. Thus,
most approaches focus on patterns with a high precision in order to avoid potential
errors. In contrast, the approach of Pantel et. al, called ESPRESSO, uses addition-
ally patterns with high recall and low precision, so-called generic patterns [PP06].
Note that ESPRESSO is capable of determining semantic relations in general, not
only hypernymy relations. To compensate for the smaller reliability of generic pat-
terns a term pair ¢; := (¢;,,1;,) extracted by a certain pattern is only classified to
a semantic relation if the confidence value associated to this word pair exceeds a
certain threshold. This confidence value is given as:

s = Y 5,00)- 2 (14)

pEPR

with:
e Ppg: pattern classified as being reliable
e Sy(i) : pointwise mutual information between a pattern p and a term pair
ti = (til’tiQ)
e 7(p) : reliability of a pattern p
The pointwise mutual information is given as:

|ti1apati2|
tip *7ti2’ ' ‘*7p7 *’

where |t;,,p, ti,| denotes the number of matches of pattern p in a text corpus where
the slots of the pattern are instantiated to ¢;; and t;, (“*” is the wildcard operator
which matches to any expression).

The reliability of a pattern is determined by analyzing the mutual information
between the applicability of this pattern and occurrences of word pairs of a certain
semantic relation. A high mutual information expresses a strong association between
a pattern and a word pair.

Gliozzo describes a syntagmatic approach to extract hyponymy relations, not em-
ploying text patterns [Gli06]. Instead, his approach is based on the fact that in many
cases, the semantic relation (e.g. hyponymy or meronymy) between the subject and
the object of a sentence is expressed by the verb.

Examples:

A hammer is a tool. Hammer is a hyponym of tool.

A book contains several pages. Page is a meronym of book.

He assumes that a relation, indicated by a verb v, between a subject w; and an ob-
ject wo of a sentence is more likely to occur, if all three expressions (subject, object
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and verb) build a collocation. Thus, the confidence score that a certain semantic
relation is expressed is given by:

F(’LU17'U7'LU2)
min{ F'(w1,%,%),F (*,%,w2) }
F(wl,v,*) F(*,U,HJQ)
F(’U}l,’h*) F(*v*va)

score(wy, v, wy) =

(16)

where F(w1,v,ws) counts the number of occurrences of the triple (w1, v, ws) in any
sentence with w; being the subject, v the verb, and ws the object (the expression
* can be matched with any term). These triples are retrieved by regular expression
matching over the output of a shallow parser. Note that an evaluation of this method
was missing.

Apart from its syntagmatic approach, Cimiano et al. also proposed a paradig-
matic method [CPSTS05]. This method examines the textual context of potential
hypernym /hyponym pairs in a large text corpus. This approach is based on the
observation that the textual surrounding of a hypernym can also occur with the
corresponding hyponym but not necessarily the other way round. Let us consider
an example for this fact with the hypernym flower and the hyponym rose. Let us
assume that the regarded context just contains the preceding word. Prickly rose is
a collocation but not prickly flower. However, both nice rose and nice flower are
collocations.

The probability that a hyponymy relation holds between two terms is estimated
by:

| features(t1) N features(tz)|

h to,t1) = .
yponym( 25 1) |features(t1)| ( )

The used features are the occurrences of modifying adjectives, prepositions, posses-
sive pronouns and certain sentence constructions. Moreover, Cimiano et al. extract
hyponym relations from multi-word nominal phrases. If such a noun phrase p; con-
sists of an adjective followed by another nominal phrase po, then p; is often the
hyponym of po, e.g., the nominal phrase international conference is a hyponym of
conference. To improve the accuracy of the results, Cimiano et al. combine several
approaches for hyponym recognition using alternatively naive Bayes, perceptron, and
decision tree classifiers.

An approach which does not rely on context analysis or pattern matching is de-
scribed by Kashyap et al. This approach constructs a taxonomy by document cluster-
ing [KRTS05]. All documents to be used for building the taxonomy are represented
by a matrix M where the component M;; specifies the relative frequency of term ¢
occurring in document d;. The dimension of this matrix is reduced using the same
methods as with Latent Semantics Analysis (LSA) [LFL98].2 All documents are
clustered hierarchically according to their LSA-transformed frequency vectors. Af-
terwards certain cluster nodes are selected to build the taxonomy where the number
of the selected nodes can be influenced by a parameter. The associated linguistic la-
bel of a single node of the taxonomy is determined according to the term occurrence
vectors belonging to the documents in the associated cluster. In particular, the term
having the smallest distance to the centroid of the cluster is chosen for labeling. The
hierarchy of the taxonomy follows directly from the cluster hierarchy.

An alternative approach for document clustering is proposed by Thanh Tho Quan
et al. and is based on fuzzy set theory and formal concept analysis [QHFCO04].

2 An alternative method without LSA was also evaluated but lead to inferior results.
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Cluster hierarchy Taxonomy

Figure 8: Building a Taxonomy via text mining. Some of the cluster nodes are selected for the
construction of the taxonomy.

Table 3: Example for a fuzzy formal concept analysis with document set G = {d;, d2,ds} and term
set M ={D,C, F}.
D C F
dy 0.8 0.12 0.61
d2 0.9 0.8 0.13
ds 0.1 0.14 0.87

A fuzzy set o(G) over a set G is a set in which each element ¢ is assigned a certain
degree of membership u(g), usually ranging from zero to one. The cardinality of this
set is given as the sum of all membership degrees: [¢(G)| = >_ cq 1(9)-

In a first step Quan et al. construct a fuzzy set I = (G x M) where G denotes
a set of documents and M a set of given terms, which are possibly relevant for
these documents. This fuzzy set can be represented as a matrix where each entry
I;; ranges from zero to one and specifies the relevance (membership) of a term t;
for document d;. An example is shown in Table 3 with G = {d;,ds,ds} and M =
{C(lustering), D(ataMining), F(uzzy)}. Membership values which are smaller than
a given threshold are ignored and therefore removed from the fuzzy set.

In the next step, each document is assigned a membership value by building the
minimum value of all the concept membership values which are associated with that
document. Thus, for document d; this value is the minimum value of all elements of
row 4 of the matrix I which are not less than h.

A concept is defined as a pair (p(G'), M") of documents ¢(G’) and terms M’ with
G' CG, M' C M where G’ is the set of all documents in which all terms of M’
appear (i.e., membership degree above threshold). A concept is created for every
possible subset of terms for which the document set is not empty. Additionally,
this set always contains the pair (G, {}). Consider for example the fuzzy set given
in Table 3. If the threshold A is 0.5, no concept is created for the term set {C,F}
since the membership value of this term set falls below that threshold for all given
documents.
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{}
{D.C,F}

Figure 9: Example of a concept hierarchy from Quan et al. Concept nodes contain tuples of docu-
ments and terms. Arcs between concepts denote concept subsumptions and are labeled
with the similarity values of the associated concepts.

An ordering is defined on the concept set in such a way that a concept C1 is consid-
ered smaller than a concept Cs if the associated set of terms of Cy is subsumed by Co.
The concept ordering for the example from Table 3 is illustrated in Figure 9. Fur-
thermore, a similarity measure is defined on two concepts by the Jaccard /Tanimoto
coefficient (see Section 3.3): gBl};I
Example for concepts Cy and Cjy:

lp({d1})] 0.61

) = = =0.41 1
sim(Co, Co) = o )]~ 061+ 087 " (18)

All concepts which are very similar to each other (i.e., similarity measure above
a certain threshold, e.g., 0.5) are combined into a single compound concept. The
resulting hierarchy represents a taxonomy. Currently, concepts of this taxonomy are
not yet lexicalized, but the automatic assignment of word labels to taxonomy nodes
is planned for future work.

Aside from ordinary texts, hypernym relationships are also extracted from dictio-
naries [Cla98]. Dictionaries are differentiated into mono- and bilingual. A bilingual
dictionary contains translations for each word in another language while a mono-
lingual dictionary describes the meaning of a word with a short text passage in the
same language. Such a definition often contains a hypernym of the defined word
which is exploited by the approach of Rigau.

Example from Miller [CF98, p.24]: bird: warm-blooded egg-laying animal having
feathers and forelimbs modified as wings

The hyponym is expected to be the so-called genus term (most important term) of
the noun/verb definition which is often the first noun occurring in the definition.
Rigau employs a special grammar to extract this term. Afterwards, a Word Sense
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hypernym (L)
. l l i

synset, (L ,) synset,(L ,) synset,(L ) oo

i

synset) (L,) | | synsety(Ly) | | synsetz(L,) | °°°

T T !

hyponym (L 1)

language L; are both translated to synsets in language Lo.

Disambiguation is applied to the genus term and its textual context to determine
the semantic concept associated with that term. Note that the genus term might
be a synonym instead of a hypernym of the defined word which can result in circles
in the learned taxonomy, e.g., if the definition of the word car contains the word
auto and the other way around. Thus, these circles are identified and the associated
words are considered as synonyms.

After the taxonomies for the selected languages (with Rigau: English and Spanish)
are fully constructed, Rigau uses a bilingual dictionary to complete information being
present in one language but missing in the other. For that, all synsets of language
Lo are identified which are either the translations of the hypernym or the hyponym
in language L; (see Figure 10). On this basis, the correct synset pair has to be found
which represents the hyponymy relation in language Lo. More specifically, the pair is
chosen for which the associated synsets are most similar to each other measured by
a WordNet based similarity measure. This measure basically reflects the minimum
number of WordNet arcs which are required to reach a member of the hypernym
synset from a member of the hyponym synset where a lower number of arcs denotes
a higher similarity. Note that both synsets can be connected in this graph (e.g., by
using the root node) even if no hyponymy relation exists between them yet. Die
Bestimmung des Genusterms war in 97% der F”alle korrekt. Die Akkuratheit des
Verfahrens ist 80%.

3.5 Learning Meronyms and Holonyms

Meronymy relations can be divided into the following subrelations [WCHS87]:

e Component-integral: a relation between an object and one of its components.
Important for this relation is the fact that object and component can be per-
ceived separately from each other. For instance, it is possible to clearly distin-
guish a wheel from a car.

e Member-collection: This relation represents the membership in a set.
Example: A soccer player is member of a soccer team.

e Portion-mass: relations which refer to mass units and their parts.

Examples: A meter is part of a kilometer. A slice of the cake is part of the
cake.

e Stuff-object: This relation represents the chemical composition of an object.
Examples: Alcohol is part of wine. Carbon diozide is part of the air.

e Feature-activity: Activities can usually be divided into several subtasks.
Example: The following subtasks belong to the activity going out for dinner:
Visiting a restaurant, Ordering, eating and payment.

Figure 10: Extracting hyponyms by exploiting a bilingual dictionary. Hyponym and hypernym of

25



3 Knowledge Acquisition

Table 4: Some of the Patterns Suggested for the Recognition of Meronyms by Girju et al.; (indices
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below: 1=meronym, 2=holonym).

Number Pattern Example

1 NP1 is part of NPo the engine is part of the car

2 NPy’s NPy girl’s mouth

3 NP1 of NPy eyes of the baby, doors of cars
4 NP5 verb:have NP The table has four legs.

5 NPy P NP, A bird without wings cannot fly.
6 NPy P NP, A room in the house.

7 NP(N3Ny) (noun compound) door knob

8 NP(N1N3) (noun compound) turkey pie

e Place-area: This relation holds between two objects if one of these objects is
geographically part of the other object.
Example: Germany is part of Europe.
For the extraction of meronyms, a pattern-based approach is suggested by Girju et
al.[GBMO6] (see Table 4 for a subset of these patterns).

Constituents which match to these patterns are often but not always related in a
meronymy relation. Note that there are big differences regarding the accuracy con-
nected with these pattern. By using the first pattern (...is part of ...), meronyms
can be recognized very reliably. However, this is not the case for most of the other
patterns. For example, the third pattern matches to the sentence “The son of Pete
s lazy.” although there exists no meronymy relationship between Pete and his son.

In order to find meronymy relations with ambiguous patterns too, a more sophis-
ticated approach is needed. For that, Girju et al. employ the information from the
WordNet concept hierarchy [Fel98] of the matched expressions. In a lot of cases
the concept taxonomy is an important information for the detection of meronyms.
For instance, if both concepts are hyponyms of human being then the existence of a
meronymy relation can be rejected. However, if both objects are artefacts, then a
meronym relation between them is quite possible.

For the classification of the concept pairs (c1, c2) which are matched by a pattern,
a decision tree approach is used. An example should be classified to yes by the tree if
a meronymy relation is actually present, to no otherwise. A single example consists
of a tuple (s1, s2,yes/no). At the beginning, s; and sy are the most general concepts
(in the hypernym hierarchy) of ¢; and ¢o. These examples are used to train a decision
tree. All examples for which no unique decision could be made are collected. In these
examples the hypernyms are further specialized which means they are replaced by
the next more specific concepts which subsume ¢; (¢o respectively). To do this, the
associations between examples and word pairs have to be remembered. The decision
tree is then reconstructed with the modified examples. This process is iterated until
all examples are classified correctly or the most specific concepts are reached. Note
that this approach is based on concepts not on words. A Word Sense Disambiguation
is used to determine the correct concept for each word. This method was evaluated
showing a recall of 84 % and a precision of 79 %.

The approach of Costello [Cos07] also employs the concept taxonomy for meronymy
detection. In contrast to Girju et al., he focuses only on noun-noun compounds and
his approach is based on words instead of semantic concepts. Note that Costello does
not concentrate on meronymy relations only but extract a whole range of semantic
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relations .

During the training phase, he tags a large number of word pairs appearing in noun-
noun compounds with their semantic relations. To determine the semantic relation
for a word pair of a previously unseen compound, all elements of the Cartesian
product of the senses and hypernym senses of its (two) components are investigated,
i.e., if the first component has n (hypernym) senses and the second component m,
there will be a total of nm of such pairs. The semantic relation is chosen which most
often holds between any sense pairs of the Cartesian product as determined by the
initial tagging.

A further important characteristic which is employed for meronymy recognition is
the physical size of an object since a meronym is always smaller than the associated
holonym [AIMOOQ7]. The approach of Aramaki et al. determines the size of an
object employing a search engine query with several patterns. The size information is
combined, via a support vector machine, with the extraction of meronyms employing
two kinds of text patterns. One of the most serious problems, Aramaki et al. were
confronted with, consists in the fact that the sizes can vary quite strongly. For
instance, the word car can also denote a model car which is much smaller than a
real car.

3.6 Learning Antonyms

Antonyms are important for many tasks in the area of NLP. Consider for example
the following Textual Entailment problem:

Base text: The car of Dr. Peters is slow.

Hypothesis: The car of Dr. Peters is fast.

If it is known that fast is an antonym to slow, it can be recognized that the hypothesis
cannot be inferred from the base text. In general, antonyms are a typical indicator
that certain entailments do not hold.

The approach of Lucero et al. [LPJS04] recognizes antonyms by a combination of
the following three methods:

e Antonyms are identified by the text patterns®:
— anto; * but * anto,
— anto; * but rather * antoy
— from * anto; to * antogy
— anto; and * antos
— anto; or * antos
For instance, a pattern “*anto;*but*antos” can be employed to find antonyms
from a sentence like: The song was not only not bad but even good.
e Distance between both antonyms: Antonyms often appear quite close to each
other in a sentence (see example above).
e Check for synonymy: The approach of Edmonds (see page 19) is used to esti-
mate the probability that both words are synonyms and not antonyms.

Wk 9

The total score of a word pair being related in an antonymy relation is given by the
sum of three single scores reflecting the three methods as described above.

3the text patterns are translated from Spanish to English
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3.7 Learning Other Kinds of Common Sense Knowledge

There exists a lot of knowledge which cannot be extracted with the approaches
described above, e.g., typical properties of objects. In the following we introduce two
approaches which do not restrict the type of common sense knowledge to acquire.

A method which learns common sense knowledge via text mining was proposed
by Suh et al. [SHKO06]. This approach extracts all statements which are contained
in generic sentences, like Bees produce honey. This is based on the fact that generic
sentences usually contain common sense knowledge. Whether a sentence is meant
generically or not is determined using several heuristics (e.g., missing article or given
date or time). Note that usually only a small portion of sentences in a corpus is
generic which means that the recall of this method is quite low.

In contrast, the approach of [HLQWO1] extracts common sense knowledge from
non-generic sentences as well. In particular, it determines triples containing two
noun phrases and a predicate where the latter specifies the kind of relationship
between the noun phrases. This algorithm assumes that two elements of this triple
are already known and the third one is to be determined by corpus analysis. For
that, all collocation terms of the two given expressions are determined separately
by employing the statistical G-test (see [Dun93]). The candidate set for the third
expression is given as the intersection of both collocation sets.

3.8 Learning Other Kinds of Knowledge

There exist several kinds of knowledge which can be contained in a knowledge base
or a semantic lexicon which can also be learned automatically but are not in the
primary focus of this report. This includes but is not limited to named entities, part
of speech information and valency frames of verbs, nouns and adjectives.

Named Entities: Named Entity recognition denotes the task to learn person names,
dates, times, names of organizations, substances or geographical locations. It can be
either done to extend existing lexical resources (offline) or to employ this informa-
tion directly for some NLP application (online) where the first application scenario
belongs to the task of knowledge acquisition.

Three major problems have to be solved by the Named Entity recognition:

e recognize which tokens belong to a named entity and which not,

e identify start and end tokens for a named entity since a named entity often
consists of several tokens, and

e classify a named entity into a given set of classes (e.g., person, time, location).

Named entity recognition is usually done by employing generative models like Markov
chains [Mar13] or discriminative models like Maximum Entropy Modeling [MFP00]
and Conditional Random Fields [LMPO1]. These models have in common that they
represent a text as a graph (chain, in the simple case) of tokens. One major ad-
vantage of Conditional Random Fields concerning named entity recognition consists
in the fact that they can represent far-distant relationships between named entities,
e.g., if two named entities occur several times in a text their assigned named entity
type should be identical [SMO7].

Part of Speech-Information: Part of speech tagging deals with the problem to assign
each token its part-of-speech, e.g., verb, noun, adjective, etc. A part of speech tagger
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can be used to automatically extend the lexicon or (as a preprocessing step for the
parser) to disambiguate words which can be assigned several parts of speech, e.g., the
word can may be used as a noun or as a verb. Part of speech tagging employs tech-
niques similar as named entity recognition (i.e., Markov Chains, Maximum Entropy
Modeling and Conditional Random Fields). One major advantage of Conditional
Random Fields is that the label bias problem of the Maximum Entropy Modeling is
avoided [LMPO1, Wal02]. This problem occurs if the entropy of some states (graph
nodes) is very small, e.g., if there exists only a single successor state. In this case
their transition probabilities can be almost independent of the output (output here:
surface text of a token).

Valency frames: Verbs, nouns and adjectives can have arguments. These arguments
can either be obligatory (arguments which must show up) or optional (arguments
which need not be present in a sentence). The arguments including their syntactic
and semantic features are called the valency frame. An approach to learn the syn-
tactical part of the valency frame by text mining is proposed by Brent [Bre93]. A
problem which has to be dealt with is that the usage of parsers (especially of deep
parsers) is quite limited for this task since parsers usually require the valency or
subcategorization frames already to be known.

4 Learning Readability Formulas

4.1 Readability and Readability Formulas

Various methods to derive a numerical value corresponding to text readability have
been proposed [Kla63, DuB04]. One of the most popular readability formulas nowa-
days, the Flesch Reading Ease score, was developed already in 1948 [Fle48]. For
judging readability, this formula uses the average sentence length and word length.
The average sentence length is intended to roughly approximate the complexity of a
sentence, while the word length is related to word frequency since usually long words
are less used. The Flesch readability formula is defined as follows:

P =206.835 — (1.015 x ASL) — (84.6 x AWL) (19)

with:

P : readability score (scores around zero correspond to simple texts, scores about
100 to difficult texts)

ASL : average sentence length (measured in number of words)
AWL : average word length (measured in syllables)

Later on, this formula was also adapted to German, resulting in the Amstad Read-
ability index [Ams78|. Despite of its age, the Flesch formula is still widely used.
Moreover, its indicators sentence/word length are employed in various other read-
ability formulas [Kla63, BV84].

The revised Dale-Chall readability index [CD95] also depends on surface-type in-
dicators. Analogous to Flesch, this index employs (for computing readability) the
average sentence length. Instead of recognizing difficult-to-understand words by
counting the number of syllables it looks up each word in a certain word list. In
the case a word occurs in this list, it is considered to be easy to understand. Thus,
the average word complexity is determined by the percentage of words of a text not
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appearing in this list. To keep this list small, it contains no word forms but only
lemmas. Therefore, a lemmatization has to be done before lookup. This allows for
instance the word sleeps to be found if the list only contains the lemma sleep.

The Coh-Metrix-Project is dealing with a certain aspect of text readability of
English texts, i.e., the text coherence [MLDMO06]. The text coherence is determined
by identifying several referential constructs like anaphoras, temporal and spatial
relations.

Apart from readability formulas, several readability checkers with graphical user
interface were developed which are able to highlight difficult-to-read text passages
[CS96, Ras06, vdBHO7, HHLOOG6|.

4.2 Machine Learning Techniques

Most of the readability formulas have to be trained with labeled data. For that, a
readability study is usually conducted where the readability of texts of a given corpus
is determined by a large amount of participants. Besides letting the participants
directly rate a text, the following methods are commonly used to derive a readability
rating:

e Ask the participants questions about the text. The percentage of correctly

answered questions is a good estimation of text readability [ARV71].

e Cloze procedure: Certain words (e.g., every fifth word) are removed from the

text. The participants have to fill in the gaps [Tay53].

In the next step, a set of indicators is derived from the texts (e.g., sentence or word
length) which describe a certain aspect of readability. The indicators are then used
to derive a readability score which as closely as possible matches the ratings obtained
from the participants. Many readability formulas calculate the readability score by a
linear combination of indicator values (see Section 4.1). In this case, the parameters
can be easily determined using linear regression. However, such an approach has the
drawback that the influence of each indicator is not obvious and that this procedure
can easily lead to overfitting if too many indicators are used. This also requires work
for determining a minimal set of indicators.

Therefore, a different approach was followed by the DeLite readability checker
[vLO7]. Before combining the indicator values, all values are normalized to an interval
from zero to one. The parameters of the parameterized sum are all required to be
non-negative and sum up to one (thus, they are called weights), i.e., Z;ﬂzl wj =1
and w; > 0.

In this way, the influence of each indicator can immediately be seen. Furthermore,
indicators which are assigned the weight of zero can be automatically removed. In
addition, relatively unimportant indicators are guaranteed to have a small influence
on the readability formula. Thus, the danger of overfitting is limited.

However, ordinary linear regression can no longer be used to estimate the pa-
rameters since standard linear regression does not allow the definition of inequality
constraints which are needed to ensure nonnegative weights. DeLite uses the follow-
ing approach to handle this problem:

e Solve the linear regression with the Lagrange restriction [Gre93] that the weights

sum up to one: L = (1...1)7 and ¢ = (1) (see Section 2.7).

e Determine all weights which are negative and remove the associated indicators

from the regression model.

e Start the regression again.

e Repeat all steps above as long as any negative weights are found.
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Besides this iterative linear regression algorithm, DeLite can also follow an alterna-
tive approach using robust regression with linear optimization. In contrast to linear
regression this approach minimizes the absolute instead of the square error between
the readability score and the user ratings [BT97]:

n
Wopt = arg r%}]nz ‘yz - Xiw‘ (20)
i=1
Additional variables zi,...,z, are introduced and the optimization problem is

changed in the following way:

n

argmin Zzi (21)
W
=1
zi > Jyi—Xjw|fori=1,...,n (22)

This problem is equivalent to the original optimization problem since the solutions
for the z; are the lowest numbers which are greater than |y; — Xjw/|. Since

zi >y — Xiw| < (2 > yi — Xiw A z; > —(y; — Xyw)) (23)
the constraints can be changed to

Zq

(yi — Xiw) (24)
—(yi — Xiw) (25)

AVARLYS

Zq

This optimization problem can be solved by common linear optimization algorithms.
A commonly used and quite efficient approach for this task is the Simplex Method.
It reduces the costs continually by traversing the vertices of the polygon which con-
straints the solution space. Since the cost vector and the constraints are both linear,
the solution is guaranteed to be located on such a vertex.

A completely different approach for determining a readability score is proposed
by Larsson [Lar06]. He employs support vector machines to separate the vectors of
indicator values associated to a given text into the three different readability classes
easy, medium and difficult. This method reaches a recall and precision of about 90 %.
A drawback of this method is that the classification into three readability levels is
rather rough. In contrast, a readability formula based on a parameterized sum as
described above provides a continuous readability score.

5 Machine Learning Tools

Two of the most powerful machine learning tools, useful for studying learning algo-
rithms in the fields of knowledge acquisition and readability analysis, are RapidMiner
[IMWK™*06] and Weka [FHH'05]. There exist other tools which support only a few
machine learning algorithms. Software of the latter type are for instance the nearest
neighbor learner TiMBL (see Section 5.3) and the linear optimization library GLPK
(see Section 5.4). The most important features of all tools mentioned above are
compared in Table 5.
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Table 5: Comparison of the functionality of several machine learning tools.
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Figure 11: Screenshot of the machine learning workbench RapidMiner.
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Figure 12: Screenshot of the machine learning workbench Weka.

5.1 RapidMiner

RapidMiner (formerly called Yale) was originally developed by the Department of
Artificial Intelligence of the University Dortmund. Currently, the development is
continued by a spin-off company of this university. RapidMiner* contains more than
400 operators for data mining and machine learning. Moreover, it also provides all
operators of Weka.

RapidMiner includes a graphical user interface which offers a wide range of settings
(see Figure 11) and allows to comfortably combine and validate different machine
learning operators. In the example shown in Figure 11, a cross-validation operator
(XValidation) is specified which evaluates MAE (mean absolute error) and RMSE
(root mean square error) [GH62] for a calculation with a nearest neighbor algorithm
from Weka (W-IBK). Before the operator ModelApplier a breakpoint is set which is
symbolized by a red rectangle.

5.2 Weka

Weka® is a machine learning workbench which provides a functionality similar as
RapidMiner. It supports most of the RapidMiner machine learning algorithms and
provides a graphical user interface as well.

4URL: http://www.rapidminer.com
SURL: http://www.cs.waikato.ac.nz/ml/weka/
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5.3 TiMBL
5.3.1 Overview

TiMBLS was developed at the University of Tilburg and focuses on nearest neighbor
classification [DZvdSvdB07]. It can be accessed via a server interface which allows
for an easy integration into other applications. In contrast to RapidMiner and Weka,
TiMBL provides no GUI.

5.3.2 Classification Process

The classification of a previously unseen vector is basically done in two steps. First
the k-nearest neighbors of this vector are determined using a given similarity mea-
sure. The class is then chosen by a majority vote of the class labels of these neighbors.
TiMBL employs the 1-norm of the vector difference as similarity measure where all
vector components are first normalized to the interval [0,1] by a linear transforma-
tion. The difference of two non-numerical vector components is defined to be 0 if
both components are identical, to be 1 otherwise. For character strings the Leven-
shtein distance [Lev65] between both strings can be alternatively used as a difference
measure. Note that the individual vector components are automatically weighted ac-
cording to their importance where several weighting algorithms are provided for this
purpose (e.g., information-gain, information-ratio, or chi-squared).

5.4 GLPK

GLPK (GNU Linear Programming Kit) is a library for linear optimization and can
solve continuous-valued, integer-valued and boolean-valued optimization problems.
It provides both the Simplex Algorithm and interior point methods [BT97]. The
latter methods have the advantage that a solution is guaranteed to be found in
polynomial time which is not the case for the Simplex Algorithm. However, for most
practical problems the Simplex Algorithm is still very efficient. Since GLPK has a
high performance, it is capable of solving large optimization problems.

5.5 FOIL

FOIL is the abbreviation for First Order Inductive Learner and denotes a system
which is able to learn horn clauses from a given collection of training examples
in form of instantiated predicates [Qui90]. FOIL is a relational learning systems
(see Section 2.9) which means that the literals learned by FOIL are usually not
atomic but contain variables as arguments which can be bound to any constants.
Furthermore, certain constants can be explicitely allowed to occur in these literals as
well. FOIL is also able to find recursive rules where the predicate of the conclusion
occurs additionally in a literal of the premise.

6 Conclusions

Several approaches for the application of machine learning algorithms for knowledge
acquisition and readability analysis were introduced.

The comparison of the knowledge acquisition methods showed that almost all of
these approaches are based on a surface representation or on a syntactic dependency

STiMBL is the abbreviation for Tilburg Memory Based-Learner.
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tree. In contrast to that, approaches based on semantic representations are very
sparse. We expect that an algorithm based on a deep semantic representation can
improve recall (essentially the number of semantic relations/entailments learned from
the text) and precision (essentially the number of semantic relations/entailments
correctly learned from the text) considerably.

Currently used readability formulas are mainly based on a simple linear combina-
tion of several readability indicators. The parameters are typically learned employ-
ing a linear regression. However, such an approach has serious drawbacks concerning
overfitting or an easy interpretation of parameters. Also, a weighted sum is quite
limited in its capabilities to approximate a given target function. Thus, non-linear
readability formulas are expected to gain importance in the future. The DeLite read-
ability formula which is developed by the IICS also employs non-linear optimization
techniques.

Finally, several existing and freely available machine learning tools, which are suit-
able for knowledge acquisition and learning of readability formulas, were compared
with each other. The largest functionality is provided by Weka and RapidMiner.
Both tools support all of the most popular machine learning algorithms like regres-
sion, neural networks, decision trees, support vector machines etc. Furthermore,
they also provide an easy-to-use graphical user interface.
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