
Synonymy Extraction From Semantic Networks
Using String and Graph Kernel Methods

Tim vor der Brück1and Yu-Fang Helena Wang2

Abstract. Synonyms are a highly relevant information
source for natural language processing. Automatic synonym
extraction methods have in common that they are either ap-
plied on the surface representation of the text or on a syn-
tactical structure derived from it. In this paper, however, we
present a semantic synonym extraction approach that oper-
ates directly on semantic networks (SNs), which were derived
from text by a deep syntactico-semantic analysis.

Synonymy hypotheses are extracted from the SNs by graph
matching. These hypotheses are then validated by a sup-
port vector machine (SVM) employing a combined graph and
string kernel. Our method was compared to several other ap-
proaches and the evaluation has shown that our results are
considerably superior.

1 Introduction

In natural language (NL) the same objects or concepts can be
referred to with manifold names and in ever-changing ways.
It is obvious that a good coverage of synonyms is useful for
a wide range of NL applications. In voice search, hot appli-
cations are music selection in a local MP3 media library or
the navigation to a point of interest. The reference string for
speech recognition is provided by the respective database en-
try, usually the official name. However, that name is often
unwieldy, e.g., ‘Five Guys Famous Burgers and Fries’ will of-
ten be spoken as ‘Five Guys’; the category ‘Place of worship’
will more simply be referred to as ‘church’.

In this work, we present a purely semantic synonymy ex-
traction method based on semantic networks. This method is
hybrid and employs patterns as well as kernel functions and
combines the advantages of both methods with each other.

2 Related Work

A lot of research on synonymy extraction has emerged from
the meanwhile classical vector space model, in which each
word in a corpus is represented as a vector so that all words
span a vector space [18, 10]. One base assumption is that
words are similar if their associated vectors are located close
to one another.

The word vectors represent the textual context, which is
given by neighboring words or words that are related to the
investigated word by a certain grammatical relation (head-
modifier in [21] or predicate-argument structures in [13]).

1 Universität Frankfurt, vorderbr@em.uni-frankfurt.de
2 FernUniversität in Hagen, yh.wang@web.de

The element vi of the vector for a word w determines the
frequency of another word ui appearing in the context of w.
The semantic similarity can be estimated by applying a sim-
ilarity measure on these vectors. Well-known similarity mea-
sures are cosine, p-norm, Kullback-Leibler divergence, or in-
formation radius [15, 18]. Some approaches use only binary
values for vector elements, i.e., vi = 1 if the number of oc-
currences is above a given threshold. Common binary-valued
similarity measures are Matching Coefficient, Dice Coefficient,
Jaccard/Tanimoto coefficient, Overlap coefficient, or Cosine
[18]. Other methods for estimating semantic similarity con-
sider iterated co-occurrences [4], co-occurrence networks [3]
or use an ontology [14, 17, 16].

Yu’s method for synonym extraction comes from a com-
pletely different angle. She introduced a syntagmatic, pattern-
based approach [25] in which certain key expressions are used
to identify patterns. The following patterns are employed:
• syno(a1 , a2)← a1 . . . synonym . . . a2
• syno(a1 , a2)← a1 . . . called . . . a2
• syno(a1 , a2)← a1 . . . known as . . . a2
where a1 and a2 are the nearest noun phrases around the re-
spective key expression. The method was extended later [26].
The drawback here is that if arbitrary non-noun tokens are
allowed between the key expression and a1 , a2 , the patterns
are easily rendered invalid, consider e.g., the word ‘not’ be-
tween a1 and ‘known as’ or embedded subclauses between a1
and a2 . However, if the patterns are considered as closed ex-
pressions without token insertion, they are often too specific
and cannot be applied.

Although rather rarely used for the extraction of lexical
relations like synonymy, kernel functions are often applied for
semantic relation extraction. This is often done by comparing
the paths in a dependency tree [27, 1, 5] or the dependency
subtrees containing the two relation candidate components
[2, 5].

3 MultiNet

MultiNet is the underlying SN formalism for our text min-
ing approach [12]. In contrast to ontology-like SNs, such as
WordNet [8] or GermaNet [9], which contain lexical and se-
mantic relations between synsets (sets of synonyms), Multi-
Net is designed to comprehensively represent the semantics of
a natural language expression, e.g., a sentence. In MultiNet,
an SN consists of a set of nodes and edges. Nodes represent
the concepts (word readings), and edges represent the rela-
tions between the concepts or functions, where concepts can

be arguments or results. Examples of MultiNet relations are
given below:
• *altn1: Function generating alternative pluralities of enti-

ties (or/and)
• *altn2: Function generating alternative pluralities of enti-

ties (exclusive or)
• attch: Attachment of an object to another object
• sub: Relation of conceptual subordination (hyponymy or

instance relation)
• subr: Relation of conceptual subordination for relations
• syno: Synonymy relation
An example SN is shown in Figure 1. Nodes can be of two
kinds: lexicalized nodes are associated to entries in the se-
mantic lexicon, while nodes that represent complex situations
or individual objects are not associated with single lexical en-
tries. The latter nodes are just assigned a unique ID. To each
concept, one or more ontological sorts, and a set of binary-
valued semantic features is assigned. The ontological sorts
(currently more than 40) form a taxonomy. In contrast to
other taxonomies, ontological sorts are not necessarily lexi-
calized, i.e., they need not denote lexical entries. The follow-
ing enumeration shows a small selection of ontological sorts,
which are derived from object (object is directly derived from
the root node and stands for a nominal concept.):
• Concrete objects: e.g., milk, honey

– Discrete objects: e.g., chair
– Substances: e.g., milk, honey

• Abstract objects: e.g., race, robbery
Semantic features denote certain semantic properties for ob-
jects. Such properties can either be present (+), not present
(-) or underspecified. The concept bee.1.1 is e.g. characterized
by: discrete object, animal +, animate +, artif -, human -,
spatial +, etc. Note that the suffix .1.1 denotes the read-
ing numbered .1.1 of the word bee. See [12] for details on the
numbering scheme.

The SNs are constructed by the deep linguistic parser
WOCADI3 [11] for German text analysis. For parsing,
WOCADI employs a word class functional analysis instead
of a grammar. Aside from the SNs, WOCADI also creates
a dependency tree and a so-called token list, which contains
the tokens enriched with semantic and morphological infor-
mation. Note that in some cases, the WOCADI parse may
fail, particular if the sentence contains grammar errors, com-
plex syntactic constructions or metonymy, which can violate
semantic constraints.

4 Synonym Extraction

As we have seen, after running the WOCADI parser on a
corpus (here the German4 Wikipedia), its knowledge is avail-
able as a collection of SNs and token lists. In order to exploit
the SNs and detect synonymy relations between concepts in
the SNs and token lists, inference rules are employed, which
we call extraction rules. Each extraction rule is given by a
premise and a conclusion. In the case of synonym extraction,
the conclusion is simply an underspecified synonymy relation,
expressed as syno(a1 , a2).

3 WOCADI is the abbreviation for word class disambiguating
parser.

4 Note that for better readability, all examples and extraction rules
are translated from German to English.

The premise part of a deep extraction rule formulates logi-
cal conditions over nodes and edges of an SN, and takes itself
the form of an SN. That premise SN is tested to match against
an instance SN like a template5. If a match is established,
the instantiated conclusion (bindings are obtained from the
matching premise) is extracted as synonymy hypothesis.

c1

c2
c3

SUB

ORNT

TE
MP

S
U
B
S

TEMP

string_bass.1.1

sometimes.1.1

call.1.1

present.0

OB
J

SU
B

fokus
WCFA−TAG

SYNO
double_bass.1.1

Figure 1: Extraction rule DS1 (see Table 1) applied to the SN
representing the sentence: ‘A double bass is sometimes also called
string bass.’ Arcs matched with the rule premise are printed in
bold. The dashed line denotes the inferred relation.

An example of an extraction rule application is illustrated
in Figure 1. The SN6 shown in this figure was created by
the parser for the sentence ‘A double bass is sometimes also
called string bass.’. The node c1 represents the whole situa-
tion. subs(c1, call .1 .1) denotes the fact that this specific situ-
ation is about calling, i.e., c1 is a troponym of call .1 .1 , which
is expressed by the subs(c1, call .1 .1) relation. The two ob-
jects (double bass and string bass) participating in this situa-
tion are connected by the relations obj (neutral object) and
ornt (orientation). The temp edge specifies the temporal em-
bedding of this situation (present.0 and sometimes.1.1).

In addition to deep extraction rules, we also employ shallow
rules. In contrast to deep extraction rules, shallow rules are
also applicable if a sentence is not parsable. The premise of
such a rule is based on a regular expression of feature struc-
tures. The feature structures are tested to unify with the fea-
ture structures of the token list as provided by the parser.
An entry for a single token contains (among others) the sur-
face word form, the concept, the lemma and the grammatical
category. The variables a1 and a2 of the conclusion may be
matched to any concept of ontological type object (grammati-
cal category: noun phrase). Some example shallow extraction
rules are given below7:
• syno(a1 , a2)← a1 , in short a2
• syno(a1 , a2)← a1 ‘(’ synonymous: a2
• syno(a1 , a2)← a1 is [cat art] abbreviation (of ∨ for) ?[cat

art] a2
This section describes several advantages of deep extrac-

tion rules in contrast to shallow extraction rules. Consider the

5 We call ‘instance SN’ the SN which resulted from the application
of the WOCADI parser to surface text.

6 Note that strictly speaking, the sentence is incorrectly consid-
ered as non-generic by the parser, which is expressed by the two
relations sub(c2 , double bass.1 .1) and sub(c3 , string bass.1 .1).

7 The full list of shallow extraction rules is given at www.vdb1.de/
syno.html

2

DSi Definition Example

1

syno(a1 , a2)← arg1(e, f)∧
attch(g, f) ∧ subr(e, sub.0)∧
sub(f, synonym.1 .1)∧
sub(g, a1) ∧ arg2(e, h)∧
sub(h, a2) ∧ sub(h, f)∧

Person is
a synonym of
human being.

2

syno(a1 , a2)← ornt(e, h)∧
sub(h, a1)∧
obj(e, f) ∧ sub(f, a2)∧
subs(e, call .1 .1)

A laptop is
also called
notebook.

3
syno(a1 , a2)←
PREC *altn1(d, e)∧
sub(d, a1) ∧ sub(e, a2)

A dog, hound,
or canine
denotes a
certain type
of animal.

4

syno(a1 , a2)← assoc(e, f)∧
sub(f, a2) ∧ subr(e, prop.0)∧
arg1(e, g) ∧ sub(g, a1)∧
arg2(e, synonymous.1 .1)

laptop is
synonymous
to notebook.

Table 1: Deep extraction rules for synonym extraction.
PRECf (x, y) denotes that x and y are arguments of function f
and x directly precedes y in the argument list.

sentences: ‘Notebook ist ein Synoynm zu Laptop.’ and ‘Note-
book ist ein Synonym von Laptop’ (Both sentences mean:
‘Notebook is a synonym of Laptop’.) To extract the synonymy
relation syno(notebook .1 .1 , laptop.1 .1) two different surface
rules are required. Putting them together, the following dis-
junction can be used:

syno(a1 , a2)← a1 is a synonym (for ∨ of) a2 (1)

Also, two different dependency trees are created for the
two sentences (tested by applying the Stanford Dependency
Parser [19]), which also lead to two different extraction rules
for the use of a dependency tree representation. This is not
necessary if deep semantic rules are employed, since both
surface representations are mapped to the same SN. The
synonymy relation syno(notebook .1 .1 , laptop.1 .1) can be ex-
tracted from both sentences just by applying extraction rule
DS1 . Another example is given by the sentence pair:
1. ‘The eelpout, which is also called Lycodichthys antarcticus,
lived at the coasts of North Europe.’
2. ‘The eelpout is also called Lycodichthys antarcticus.’
Again, the synonymy relation
syno(eelpout .1 .1 , lycodichthys antarcticus.1 .1) can be ex-
tracted from both sentences by a single extraction rule (this
time DS2), while two rules would be necessary for a depen-
dency tree or surface representation.

In both cases, the recall was increased by the higher gener-
ality of deep extraction rules. Also, the use of a deep semantic
representation in form of SNs can improve precision. Consider
the two sentences:
‘1. Mr. Schulz will travel to Cologne by either train or car.’
‘2. An automobile or car denotes a machine with the following
properties:. . . ’
In the first sentence, the word ‘or’ is an exclusive-or, that
means ‘Mr. Schulz’ will only take either one of the two
means of transport but not both together. In the second sen-
tence, the ‘or’ is meant in the sense that both concepts de-
note a car, i.e., the two concepts do not exclude each other.
Therefore, the deep extraction rule (*altn1 combines con-
cepts by an inclusive or) DS3 extracts the synonymy relation

syno(automobile.1 .1 , car .1 .1) but not the
incorrect hypothesis syno(train.1 .1 , car .1 .1), while a shallow
extraction rule would also create the incorrect hypothesis.

An example where the shallow pattern-based approach of
Yu [25] (described in Section 2) would be misleading is:
‘Aspirin (chemical formula is given in Fig.3), which was
discovered by the French chemist C. F. Gerhardt and is
also called acetylsalicylic acid, is a famous medicine against
headache’.
In this case, even three noun phrases (‘chemical formula’, ‘Fig.
3’, ‘French chemist C. F. Gerhardt’) are located between the
two synonyms, which would lead to the incorrect hypothesis
syno(french chemist c. f . gerhardt , acetylsalicylic acid). In
contrast, the deep approach would actually extract the cor-
rect hypothesis syno(aspirin.1 .1 , acetylsalicylic acid .1 .1) by
means of the extraction rule DS2 .

5 Validation of Synonymy Hypotheses

Not all hypotheses generated by the extraction rules are cor-
rect. Therefore a two-step mechanism is devised consisting of
a semantic-oriented filtering and an SVM-based validation.
Semantic-oriented Filtering: In MultiNet, a concept can be a
meaning molecule[12]. In this case it consists of several facets.
These facets are assigned different ontological sorts and se-
mantic features. For instance, one facet of school.1.1 denotes
the group of people representing a school (i.e., teachers and
students), another facet denotes the institution and a third
the building. In order for two concepts to be synonymous, se-
mantic features and ontological sorts have to coincide for all
facets and the number of facets have to be identical.

For example:
• house.1.1 (artif:+, animal:-) cannot be synonymous to

ape.1.1 (artif:-, animal:+)
• house.1.1 (discrete object) cannot be synonymous to wa-

ter.1.1 (substance)
• school.1.1 (3 facets) cannot be synonymous to building.1.1

(1 facet)
If this condition is not fulfilled, the investigated concept pair
is not stored in the hypotheses database.
SVM-based Validation: Synonymy hypotheses that pass the
filter described in Section 5 are not necessarily correct. For
this reason, a set of features is calculated, which are used
to derive a confidence score by means of a support vector
machine (SVM) [24].

Usually, the support vector optimization problem is solved
by using the dual representation. For this, a similarity mea-
sure is required to compare the instances of the training cor-
pus with each other. Traditionally, this similarity measure was
given by the scalar product. In newer approaches this product
was generalized to a kernel function, which makes it no longer
necessary to create feature vectors for the given instances. In-
stead, the kernel function can directly compare the instances,
which allows it to use SVM for classifying data that have
no natural vector representations, such as trees, graphs, or
data that have vector representations of different lengths like
strings. We used a string and graph kernel as well as ordinary
feature values.

Graph Kernel : A graph kernel is used to estimate the sim-
ilarity of two graphs. In this scenario, the SNs are compared
where the relation hypotheses were extracted from. The graph

3

kernel used here estimates the similarity by counting the num-
ber of weighted common walks in the SNs. This procedure is
based on the fact that graphs with many common walks are
very similar. A walk is a generalization of a path. In contrast
to a path, the same edge can be visited twice in one common
walk. We allow common walks against the arc directions too.
Otherwise, common walks could rarely connect both synonym
nodes with each other. In the following, we give the employed
graph kernel, which is a generalization of the graph kernel of
vor der Brück and Helbig [23] to multi-label arcs that is itself
based on the graph kernel of Gärtner et al[7].

The first step in this approach consists in determining the
product graph PG = (PV ,PE) of the two so-called factor
graphs (the SNs here). Each node of the product graph con-
sists of a pair of nodes of the two factor graphs. The first
component is a node of the first graph, the second component
a node of the second graph and the labels of both nodes should
be identical. In our SN scenario, a label la is ‘anon(ymous)’
for a non-lexicalized node or the concept name otherwise.

(v1, v2) ∈ PV(G1,G2) :⇔ v1 ∈ V1 ∧ v2 ∈ V2 ∧ la(v1) = la(v2)

with G1 = (V1, E1) and G2 = (V2, E2). There is an arc be-
tween two node pairs in the product graph iff there exists an
arc between the first components of the two pairs in the first
factor graph and an arc between the second components of
the second factor graph and both labels are identical.

For the SNs considered here this procedure is too limited
since in MultiNet two nodes can be connected by several arcs
in the same direction. An equivalent representation would be
that only one arc is allowed to connect two nodes, but an arc
is assigned a set of labels.

((v1, v2), (w1, w2)) ∈ PE(G1, G2) :⇔
(v1, w1) ∈ E1 ∧ (v2, w2) ∈ E2∧

la(v1, w1) ∩ la(v2, w2) 6= ∅
(2)

One arc in the product graph is a common walk of length one
in the two factor graphs. The adjacency matrix is defined as:

APG = (aij)i=1...n,j=1...n with

aij : =

{
1, (ui, uj) ∈ PE ∨ (uj , ui) ∈ PE
0, otherwise

(ui, uj) ∈ PE ∨ (uj , ui) ∈ PE denotes the fact that the com-
mon walks can also be followed against the arc directions.
This is a variation of the original method of Gärtner et al.
An entry i, j of the adjacency matrix is one (1) if there exists
a common walk of length one between node i and j. Analo-
gously, there exist l common walks of length m between the
associated node components i and j, iff Am

PG(i, j) = l. The
similarity between two graphs G1, G2 is then estimated by:

K(G1, G2) = ι>(

∞∑
k=0

λkAk
PG)ι (3)

where
• A0

PG = I the identity matrix
• ι := (1 . . . 1)> is a vector which consists only of ones and is

used to sum up the matrix components
∑∞

k=0 λ
kAk

PG.
• ι> denotes the transposed vector to ι.

• λ < 1 is a constant which is chosen in such a way that the
sum converges. Since λ < 1, the influence of long common
walks is less than for short ones. However, since a long
common walk always implies many short common walks,
the total influence of long common walks is still larger than
for short ones.

Furthermore, the node label with two components of the syn-
onymy hypotheses are replaced by fixed variables (a1 and
a2), which makes two graphs with different hypotheses bet-
ter comparable.

There is one drawback of the method as described above.
All common walks are treated the same, regardless of whether
a common walk actually passes the synonym candidate nodes.
Therefore, the original approach of Gärtner et al. is modified
in such a way that the following two kernels are determined:
• the graph kernel of the common walks passing at least one

of the synonym nodes
• the graph kernel of the common walks passing both of the

synonym nodes
Actually, it is not possible to determine the number of com-
mon walks that pass (not necessarily start or end at) cer-
tain nodes with this method directly. However, the opposite
is quite easy. The number of common walks that do not pass
certain nodes can be determined just by removing all con-
nections from and to such nodes from the adjacency matrix.
Afterwards, the ordinary common walk algorithm can be ap-
plied.

Thus, we can determine the graph kernel of common walks
that pass at least one of a1 and a2 by subtracting the graph
kernel of all common walks that pass neither one from the
graph kernel of all common walks.

K
a1∨a2

(G1, G2) = K(G1, G2)− K
¬(a1∨a2)

(G1, G2) (4)

The graph kernel for the common walks that pass a1 as
well as a2 can be determined similarly:

K
a1∧a2

(G1, G2) =K(G1, G2)− K
¬a1

(G1, G2)−

K
¬a2

(G1, G2) + K
¬(a1∨a2)

(G1, G2)
(5)

Note that K¬(a1∨a2)(G1, G2) was added to the right side of
Equation 5 since otherwise the graph kernel for the common
walks that pass neither a1 nor a2 would be subtracted twice.

String Kernel : The graph kernel function can only be ap-
plied if the parse was successful for the sentences where the
hypothesis candidates were extracted from. This is not always
the case. Therefore, we apply a string-kernel in addition. The
string kernel is applied on the concepts of the token list as re-
turned by WOCADI. If the parse was not successful, a disam-
biguation of the readings is usually not done. In this case, the
reading is selected that appears most often in the corpus. To
improve the generality, the synonym candidates are replaced
by fixed variables (here a1 and a2). Parenthesis expressions
are removed if neither of the two synonym candidates appear
inside them. This is done to increase the performance as well
as to improve the similarity value, since such expressions are
usually not used to express the synonymy relation in any way.

We selected the common subsequence string kernel, which
counts the weighted number of common subsequences of two

4

strings (here concept lists) w and v [22, 412–414].

Kn(w, v) =
∑

u∈Cn

∑
a:u=w[a]

∑
b:u=v[b]

λlw(a)+lv(b) (6)

with:
• λ: a weighting factor with λ < 1
• a ∈ Nn: a vector consisting of sorted indices that reference

components (here concepts) in w
• b ∈ Nn: a vector consisting of sorted indices that reference

components in v
• ls : Nn → N, ls(a) := a[n]− a[1]: function that returns the

length of the covered interval in the given string
• C: here set of all concepts
Gaps in the matching process are allowed but are penalized
by increasing the exponent of λ. This exponent is not given
by the length of the subsequence but instead by the length
of the covered area in the two concept lists. In this way, a
small subsequence can still lead to a large exponent if there
are many or large gaps in the two concept lists containing
components that cannot be matched. The total string kernel
is given by: K(w, v) =

∑min{|w|,|v|}
i=1 Ki(w, v)

The Graph kernel, string kernel and a radial basis func-
tion, which is applied on a set of features, are combined by
a weighted sum. The optimal weight setting is determined
by a grid search over the interval [0,1]. We used features to
test if one concept label could be an abbreviation of the oth-
ers, if both concepts can occur in similar semantic network
contexts, if both contexts were written similar and if the re-
lation hypotheses were extracted by both deep and shallow
patterns. Additionally one binary feature is used for every
pattern which is set to one if the hypotheses was extracted by
this feature and to zero otherwise.

6 Results

PNS PS Σ
NS 297 1428 1725
S 10 167 177
Σ 307 1595 1902

Table 2: Confusion matrix for the semantic-oriented filter (see
Sect. 5). PS=Predicted synonym, PNS=Predicted non-synonym,
NS=non-synonym, S=synonym.

GSK − GK + GSK +
PNS PS PNS PS PNS PS

NS 324 376 507 193 637 63
S 67 633 104 596 113 587
Σ 391 1009 611 789 750 650

Table 3: Confusion matrix for the validation of synonyms.
GSK −=without graph / string-kernel, GK +=with graph kernel,
GSK +=with graph / string kernel.

Our synonym extraction algorithm (called SemQuire) was
applied on the entire German Wikipedia corpus of 2009. The
entire Wikipedia was parsed by the deep analyzer WOCADI
[11] and converted into SNs and token lists. The rule applica-
tion approach described in the previous sections were applied

Measure Filter GSK − GK + GSK +
Accuracy 0.244 0.684 0.788 0.874
F-measure 0.189 0.741 0.801 0.870
Precision 0.105 0.627 0.755 0.903
Recall 0.944 0.904 0.851 0.839

Table 4: Accuracy, F-measure, precision, and recall for the valida-
tion of synonyms.

on this output. In total, 265 938 synonymy hypotheses were
stored in the database, 19 269 of them only originating from
deep patterns.

The semantic-oriented filter (see Sect. 5) was tested on 1902
randomly selected hypotheses, which were annotated by hu-
man annotators with either 1 (synonymy relation actually
present) or 0 (synonymy relation not present), by a 10-fold
cross-validation. The confusion matrix is given in Table 2,
the evaluation measures in Table 4. Precision is the rela-
tive frequency with which a predicted synonym is actually
one, while accuracy is the relative frequency with which the
decision (synonym/non-synonym) is correct. The evaluation
shows that the recall is very high, which means the number of
false negatives is very small. This demonstrates that indeed
this classifier is very useful as a filter. Currently, the name and
abbreviation lexicons of HaGenLex are not yet used, which
would result in higher precision values.

The SVM-based validation was tested on 1 500 annotated
hypotheses (accuracy: 0.844, F-measure: 0.637, precision:
0.701, recall: 0.583) by a 10-fold cross-validation. Note that
this recall only reflects the validation but not the extrac-
tion of the hypotheses. We also compared our approach with
several ontology-based semantic similarity measures on the
same evaluation set. These measures exploit hyponymy and
already known synonymy relations. The ontology consists of
GermaNet, Wiktionary and HaGenLex. Since instance rela-
tions are considered as hyponymy relations in GermaNet and
Wiktionary, these measures can be applied to proper names
(such as ‘Germany’ or ‘UK’) as well. The coverage of names
by these resources is rather poor, which leads to quite low F-
measures (Leackock-Chodorov: 0.0243, Lin: 0.0227, Resnik:
0.0391 [16, 17, 20]). Context based measures perform better.
The information radius reaches an F-measure of 0.136. For
classification of the similarity measures described above we
used a threshold. All similarity values below this threshold are
mapped to 0 (hypothesis incorrect), all above to 1 (hypothesis
correct). The threshold is chosen in such a way that the F-
measure is maximized. Furthermore, we re-implemented the
approach of Yu [25] (the reimplementation of the method de-
scribed in [26] is not finished) and applied it on the Wikipedia,
too, where all patterns were translated into German. In total,
this approach extracted 11 638 hypotheses, with an estimated
precision of 0.347 (determined on an annotated subset), which
leads to estimated 4 038 correct hypotheses. In contrast, the
estimated number of correct hypotheses of SemQuire is 36 165.
Also the precision of SemQuire (0.701) is much superior to
that of Yu’s method (0.347).

Note that the F-measure is highly dependent on the applied
rules, i.e., the use of unreliable but often applicable rules leads
to a rather low (validation) F-measure, whereas the exclusive
use of reliable but less applicable rules results in a high F-
measure. Therefore, we conducted a second experiment where

5

the amount of positive and negative examples are equal (700
positive and 700 negative), which avoids such variations in
F-measure. The resulting confusion matrix is given in Table 3
and accuracy, F-measure, precision, and validation recall in
Table 4. Three different experiments were done: employing
only shallow features (GSK −), employing shallow features
and graph kernel (GK +), and employing shallow features
as well as graph and string kernel (GSK +). The evaluation
results were considerably superior to the baseline (accuracy:
0.5), which is just the approach to opt for hypothesis correct-
ness in all cases. Furthermore, the use of a graph and string
kernel leads to a significant improvement in the evaluation
measures (e.g., increase of 0.13 for F-measure). The increase
of accuracy and precision is significant with a level of 1%.

The weights of features, string kernel and graph kernel, as
determined by the grid search, which were used to combine the
kernels, took the following values: Features: 0.0, Graph kernel:
1.0, String kernel: 1.0. These weights show that if graph and
string kernels are employed, the use of the features is actually
not necessary. However, this does not mean the features are
completely useless since they are much faster to compute. For
the selected test and training set, a full parse was available for
548 of the hypotheses, only a chunk parse for 607 hypotheses,
and the parse failed for the remaining 245. This shows the
potential of the graph kernel method. Although a full parse
was available in the minority of cases, the graph kernel was
assigned a weight identical to the string kernel.

7 Discussion and Outlook

An approach called SemQuire was introduced for extracting
synonyms employing a deep semantic representation. Instead
of using only the surface representation of sentences, the pat-
terns are defined on a semantic level and are applied on SNs.

In contrast to a shallow representation, the semantic pat-
terns have the advantage of a greater generality, which reduces
the number of patterns. Also, by usage of graph and string ker-
nel, evaluation results were improved significantly. Further-
more, SemQuire obtained quite superior results in contrast to
several context and ontology-based semantic similarity mea-
sures and the approach of Yu.

For future work, we plan to learn patterns and additional
semantic features automatically. Furthermore, graph kernels
based on common walks as proposed in this paper usually
suffer from tottering, which can be avoided if the same arc is
prevented from being visited two times in a row [6]. Also the
use of the extracted synonymy relations in real-world appli-
cations is of interest.

ACKNOWLEDGEMENTS

Especially, we want to thank Prof. Helbig for his support for
this work.

REFERENCES

[1] C. Bunescu et al., ‘A shortest path dependency kernel for
relation extraction’, in Proc. of HLT/EMNLP, pp. 724–731,
Vancouver, Canada, (2005).

[2] A. Culotta and J. Sorenson, ‘Dependency tree kernels for re-
lation extraction’, in Proc. of ACL, pp. 423–429, Barcelona,
Spain, (2004).

[3] P. Edmonds, ‘Choosing the word most typical in context using
a lexical co-occurrence network’, in Proc. of ACL, pp. 507–
509, Madrid, Spain, (1997).

[4] C. Biemann et al., ‘Automatic acquisition of paradigmatic
relations using iterated co-occurrences’, in Proc. of LREC,
Lisbon, Portugal, (2004).

[5] F. Reichartz et al., ‘Dependency tree kernels for relation ex-
traction from natural language text’, in Proc. of ECML, pp.
270–285, Bled, Slovenia, (2009).

[6] P. Mahé et al, ‘Extensions of marginalized graph kernels’, in
Proceedings of ICML, Banff, Canada, (2004).

[7] T. Gärtner et al., ‘On graph kernels: Hardness results and
efficient alternatives’, in Proc. of COLT, pp. 129–143, Wash-
ington, DC, (2003).

[8] WordNet An Electronic Lexical Database, ed., C. Fellbaum,
MIT Press, Cambridge, Massachusetts, 1998.

[9] B. Hamp and H. Feldweg, ‘GermaNet - a lexical-semantic net
for german’, in Proc. of the ACL workshop Automatic IE
and Building of Lexical Semantic Resources for NLP Appli-
cations, pp. 9–15, Madrid, Spain, (1997).

[10] Z. Harris, Mathematical Structures of Language, J. Wiley &
Sons, New York, 1968.

[11] S. Hartrumpf, Hybrid Disambiguation in Natural Language
Analysis, Ph.D. dissertation, FernUniversität in Hagen, Fach-
bereich Informatik, Hagen, Germany, 2002.

[12] H. Helbig, Knowledge Representation and the Semantics of
Natural Language, Springer, Heidelberg, Germany, 2006.

[13] D. Hindle, ‘Noun classification from predicate-argument
structures’, in Proc. of ACL, pp. 268–275, Pittsburgh, Penn-
sylvania, (1990).

[14] J. Jiang and D. Conrath, ‘Semantic similarity based on corpus
statistics and lexical taxonomy’, in Proc. of ROCLING, pp.
19–33, Taipei, Taiwan, (1997).

[15] S. Kullback and R. Leibler, ‘On information and sufficiency’,
Annals of Mathematical Statistics, 22(1), 79–86, (1951).

[16] C. Leacock and M. Chodorow, ‘Combining local context and
WordNet similarity for word sense identification’, in Word-
Net. An Electronic Lexical Database, 265–283, MIT Press,
Cambridge, Massachusetts, (1998).

[17] D. Lin, ‘Principle-based parsing without overgeneration’, in
Proc. of the Workshop of Computational Terminology, pp.
57–64, Montreal, Canada, (1993).

[18] C. D. Manning and H. Schütze, Foundations of Statistical
Natural Language Processing, MIT Press, Cambridge, Mas-
sachusetts, 1999.

[19] M.de Marneffe and C. D. Manning, Stanford Typed Depen-
dencies Manual, 2008. online at: http://nlp.stanford.edu/
software/dependencies_manual.pdf.

[20] P. Resnik, ‘Using information content to evaluate semantic
similarity in a taxonomy’, in Proc. of IJCAI, pp. 448–453,
Montréal, Canada, (1995).

[21] G. Ruge, ‘Automatic detection of thesaurus relations for in-
formation retrieval applications’, in LNCS 1337, 499–506,
Springer, Heidelberg, Germany, (1997).

[22] B. Schölkopf and A. Smola, Learning with Kernels - Support
Vector Machines, Regularization, Optimization and Beyond,
MIT Press, Cambridge, Massachusetts, 2002.

[23] H. Helbig T.vor der Brück, ‘Validating meronymy hypotheses
with SVMs and graph kernels’, in Proc. of ICMLA, pp. 243–
250, Washington, DC, (2010). IEEE Press.

[24] V. Vapnik, Statistical Learning Theory, John Wiley & Sons,
New York, New York, 1998.

[25] H. Yu, ‘Automatic extraction from scientific abstracts of syn-
onyms for proteins and genes’, in Proc. of AMIA, (2001).

[26] H. Yu et al., ‘Automatic extraction of gene and protein syn-
onyms from medline and journal articles’, in Proc. of AMIA,
(2002).

[27] S. Zhao and R. Grishman, ‘Extracting relations with inte-
grated information using kernel methods’, in Proc. of ACL,
pp. 419–426, Ann Arbor, Michigan, (2005).

6

